【題目】如圖,已知△ABC.1)請用圓規(guī)和直尺作出⊙P,使圓心PAB邊和BC邊的距離相等,且⊙P經(jīng)過A,B兩點(保留作圖痕跡,不寫作法和證明);

2)若∠B=60°,AB=6,求⊙P的半徑.

【答案】1)見解析;(2)⊙P的半徑為2

【解析】

1)先作∠ABC的平分線BD,再作AB的垂直平分線交ODP,交ABH,然后以P點為圓心,PB為半徑作圓即可;

2)先利用角平分線得到∠ABP=30°,再根據(jù)PH垂直平分AB得到BH=3,然后根據(jù)含30度的直角三角形三邊的關系計算PB即可.

解:(1)如圖,⊙P為所作;

2)∵點PAB邊和BC邊的距離相等,

OP平分∠ABC,

∴∠ABP=ABC=×60°=30°

PH垂直平分AB,

BH=AB=3,

RtPBH中,PH=BH=,

PB=2PH=2,

即⊙P的半徑為2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1如圖1,網(wǎng)格中每個小正方形的邊長為1,點A,B均在格點上.則線段AB的長為 .請借助網(wǎng)格,僅用無刻度的直尺在AB上作出點P,使AP.

2)⊙O為△ABC的外接圓,請僅用無刻度的直尺,依下列條件分別在圖2,圖3的圓中畫出一條弦,使這條弦將△ABC分成面積相等的兩部分(保留作圖痕跡,不寫作法,請下結論注明你所畫的弦).

①如圖2,ACBC

②如圖3,P為圓上一點,直線lOPlBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點在以為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).

1)在圖1中作弦,使;

2)在圖2中以為邊作一個45°的圓周角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1BAC于點E,A1C1分別交AC、BCD、F兩點.

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BEBF有怎樣的數(shù)量關系?并證明你的結論;

(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.

(1)當t=5秒時,點P走過的路徑長為_________;當t=_________秒時,點P與點E重合;

(2)當點P在AC邊上運動時,連結PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;

(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點,其中A點坐標為,點,另拋物線經(jīng)過點,M為它的頂點.

求拋物線的解析式;

的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

1)(x+2225

2x22x20

3x26x160

4)(x22﹣(3x+820

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2經(jīng)過點A2,1).

1 a的值;

2 如圖1,點Mx軸負半軸上一點,線段AM交拋物線于N.若OMN為等腰三角形,求點N的坐標;

3 如圖2,直線y=kx2k3交拋物線于B、C兩點,過點CCPx軸,交直線AB于點P,請說明點P一定在某條確定的直線上運動,求出這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新定義:[a,b,c]為二次函數(shù)y=ax2+bx+ea≠0,ab,c為實數(shù))的圖象數(shù),如:y=-x2+2x+3圖象數(shù)[-1,23]

1)二次函數(shù)y=x2-x-1圖象數(shù)

2)若圖象數(shù)[m,m+1m+1]的二次函數(shù)的圖象與x軸只有一個交點,求m的值.

查看答案和解析>>

同步練習冊答案