【題目】觀察下列兩個等式:,給出定義如下:我們稱使等式abab+1的成立的一對有理數(shù)a,b共生有理數(shù)對,記為(a,b),如:數(shù)對 ,都是共生有理數(shù)對

1)數(shù)對 , 中是共生有理數(shù)對的是   ;

2)若(m,n)是共生有理數(shù)對,則(﹣n,﹣m   共生有理數(shù)對(填不是);

3)請再寫出一對符合條件的共生有理數(shù)對   ;(注意:不能與題目中已有的共生有理數(shù)對重復(fù))

4)若(a,3)是共生有理數(shù)對,求a的值.

【答案】1;(2)是;(3 等;(4a=-2

【解析】

1)根據(jù)共生有理數(shù)對的定義即可判斷;
2)根據(jù)共生有理數(shù)對的定義即可解決問題;
3)根據(jù)共生有理數(shù)對的定義即可判斷;
4)根據(jù)共生有理數(shù)對的定義,構(gòu)建方程即可解決問題.

解:(1-2-1=-3-2×1+1=1,
-2-1≠-2×1+1
∴(-2,1)不是共生有理數(shù)對
3-=,+1=,
3-=3×+1
∴(3,)是共生有理數(shù)對
2)是.
理由:- n -- m=- n + m =m-n,
-n-m+1=mn+1,
∵(m,n)是共生有理數(shù)對,
m-n=mn+1
-n+m=mn+1,
∴(-n-m)是共生有理數(shù)對;
3等;

理由:∵,

共生有理數(shù)對,

, ,

共生有理數(shù)對;
4)由題意得:
a-3=3a+1
解得a=-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市有兩種出租車.的計價方式為:當行駛路程不超過千米時收費元,每超過千米則另外收費元(不足千米按千米收費);的計價方式為:當行駛路程不超過千米時收費元,每超過千米則另外收費元(不足千米按千米收費).某人到該市出差,需要乘坐的路程為千米.

1)當時,請分別求出乘坐兩種出租車的費用;

2)①此人若乘坐種出租車比乘坐種出租車的費用省元,則求的值;

②某人乘坐的路程大于千米,請幫他規(guī)劃如何選擇乘坐哪種出租車較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD中,AB=3a厘米,BC=a厘米,點P沿AB邊從點A開始向終點B2厘米/秒的速度移動,點Q沿DA邊從點D開始向終點A1厘米/秒的速度移動,如果P、Q同時出發(fā),以t(秒)表示移動的時間,

1)用含有a、t的代數(shù)式表示APC的面積

2)求PQC的面積(用含有a、t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長春市地鐵1號線,北起北環(huán)站,南至紅咀子站,共設(shè)15個地下車站,2017年6月30日開通運營,標志著吉林省正式邁進“地鐵時代”,15個站點如圖所示.

某天,王紅從人民廣場站開始乘坐地鐵,在地鐵各站點做志愿者服務(wù),到A站下車時,本次志愿者服務(wù)活動結(jié)束,約定向紅咀子站方向為正,當天的乘車記錄如下(單位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8

(1)請通過計算說明A站是哪一站?

(2)相鄰兩站之間的距離為1.3千米,求這次王紅志愿服務(wù)期間乘坐地鐵行進的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰RtABC,使BAC=90°,設(shè)點B的橫坐標為x,設(shè)點C的縱坐標為y,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點,且與x軸交于點C,點A的坐標為(2,1).

(1)求m及k的值;

(2)求點C的坐標,并結(jié)合圖象寫出不等式組0<x+m≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】馬航事件的發(fā)生引起了我國政府的高度重視,我國政府迅速派出了艦船和飛機到相關(guān)海域進行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機在點A處測得前方海面的點F處有疑似飛機殘骸的物體(該物體視為靜止),此時的俯角為30°.為了便于觀察,飛機繼續(xù)向前飛行了800m到達B點,此時測得點F的俯角為45°.請你計算當飛機飛臨F點的正上方點C時(點A,B,C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點POA上一動點,當PC+PD最小時,點P的坐標為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點OAC平分∠BAD,過點CCEDBAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長.

查看答案和解析>>

同步練習(xí)冊答案