【題目】某廠家接到一批特殊產(chǎn)品的生產(chǎn)訂單,客戶要求在兩周內(nèi)完成生產(chǎn),并商定這批產(chǎn)品的出廠價(jià)為每個(gè)16元.受市場(chǎng)影響,制造這批產(chǎn)品的某種原材料成本價(jià)持續(xù)上漲,設(shè)第x天(1≤x≤14,且x為整數(shù))每個(gè)產(chǎn)品的成本為m元,m與x之間的函數(shù)關(guān)系為m=x+8.訂單完成后,經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)工人王師傅第x天生產(chǎn)的產(chǎn)品個(gè)數(shù)y與x滿足如圖所示的函數(shù)關(guān)系:
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)王師傅第x天創(chuàng)造的產(chǎn)品利潤(rùn)為W元,問(wèn)王師傅第幾天創(chuàng)造的利潤(rùn)最大?最大利潤(rùn)是多少元?
【答案】(1)且x為正整數(shù);(2)王師傅第天創(chuàng)造的利潤(rùn)最大,最大利潤(rùn)是元
【解析】
(1)首先觀察題中的函數(shù)圖像可知其為一個(gè)分段函數(shù),由此分別表示出時(shí)與時(shí)兩個(gè)范圍內(nèi)的函數(shù)關(guān)系式,并且其中x為正整數(shù),由此進(jìn)一步即可得出答案;
(2)根據(jù)題意分當(dāng)且x為正整數(shù)時(shí)或當(dāng)且x為正整數(shù)時(shí)兩種情況進(jìn)一步分析比較即可.
(1)由題意可得,,
∴當(dāng)且x為正整數(shù)時(shí),y與x之間的函數(shù)關(guān)系式為:,
當(dāng)且x為正整數(shù)時(shí),y與x之間的函數(shù)關(guān)系式為:,
綜上所述,y與x之間的函數(shù)關(guān)系式為:且x為正整數(shù);
(2)①當(dāng)且x為正整數(shù)時(shí),
,
∵,,
∴當(dāng)時(shí),,
②當(dāng)時(shí),且為正整數(shù)時(shí),
,
∵,
∴隨的增大而減小,
∴當(dāng)時(shí),
∵,
∴王師傅第天創(chuàng)造的利潤(rùn)最大,最大利潤(rùn)是元,
答:王師傅第天創(chuàng)造的利潤(rùn)最大,最大利潤(rùn)是元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著新冠肺炎的爆發(fā),市場(chǎng)對(duì)口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來(lái),--直積極恢復(fù)產(chǎn)能,每日口罩生產(chǎn)量(百萬(wàn)個(gè))與天數(shù)且為整數(shù))的函數(shù)關(guān)系圖象如圖所示,而該生產(chǎn)商對(duì)口供應(yīng)市場(chǎng)對(duì)口罩的需求量<(百萬(wàn)個(gè))與天數(shù)呈拋物線型,第天市場(chǎng)口罩缺口(需求量與供應(yīng)量差)就達(dá)到(百萬(wàn)個(gè)),之后若干天,市場(chǎng)口罩需求量不斷上升,在第天需求量達(dá)到最高峰(百萬(wàn)個(gè)).
求出與的函數(shù)解析式;
當(dāng)市場(chǎng)供應(yīng)量不小于需求量時(shí),市民買(mǎi)口罩才無(wú)需提前預(yù)約,那么在整個(gè)二月份,市民無(wú)需預(yù)約即可購(gòu)買(mǎi)口罩的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=2BC=4,點(diǎn)P為AB邊中點(diǎn),點(diǎn)E為AC邊上不與端點(diǎn)重合的一動(dòng)點(diǎn),將△ADP沿著直線PD折疊得△PDE,若DE⊥AB,則AD的長(zhǎng)度為_____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),與y軸交于(0,2),拋物線的對(duì)稱軸為直線x=1,則下列結(jié)論中:①a+c=b;②方程ax2+bx+c=0的解為﹣1和3;③2a+b=0;④c﹣a>2,其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,經(jīng)過(guò)點(diǎn)B(1,0)的拋物線與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)G,過(guò)點(diǎn)C作y軸的垂線交拋物線對(duì)稱軸于點(diǎn)D,線段CO上有一動(dòng)點(diǎn)M,連接DM、DG.
(1)求拋物線的表達(dá)式;
(2)求的最小值以及相應(yīng)的點(diǎn)M的坐標(biāo);
(3)如圖2,在(2)的條件下,以點(diǎn)A(﹣2,0)為圓心,以AM長(zhǎng)為半徑作圓交x軸正半軸于點(diǎn)E.在y軸正半軸上有一動(dòng)點(diǎn)P,直線PF與⊙A相切于點(diǎn)F,連接EF交y軸于點(diǎn)N,當(dāng)PF∥BM時(shí),求PN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中,沒(méi)有實(shí)數(shù)根的是( )
A.2x+3=0B.x2﹣1=0C.D.x2+x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=4,C為射線BA上一動(dòng)點(diǎn),以BC為邊向上作正三角形BCD,⊙O過(guò)A、C、D三點(diǎn),E為⊙O上一點(diǎn),滿足AD=ED,直線CE交直線AD于F.
(1)求證:CE∥BD;
(2)設(shè)CF=a,若C在線段AB上運(yùn)動(dòng).
①求點(diǎn)E運(yùn)動(dòng)的路徑長(zhǎng);
②求a的范圍;
(3)若AC=1,求 tan∠DEC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),交軸于點(diǎn),連接.
(1)求拋物線的解析式;
(2)點(diǎn)是拋物線上一點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①當(dāng)點(diǎn)在第一象限時(shí),過(guò)點(diǎn)作軸,交于點(diǎn),過(guò)點(diǎn)作軸,垂足為,連接,當(dāng)和相似時(shí),求點(diǎn)的坐標(biāo);
②請(qǐng)直接寫(xiě)出使的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生對(duì)“防溺水”安全知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理、描述和分析.部分信息如下:
a.七年級(jí)成績(jī)頻數(shù)分布直方圖:
b.七年級(jí)成績(jī)?cè)?/span>這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:
年級(jí) | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)在這次測(cè)試中,七年級(jí)在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是78分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰(shuí)更靠前,并說(shuō)明理由;
(4)該校七年級(jí)學(xué)生有400人,假設(shè)全部參加此次測(cè)試,請(qǐng)估計(jì)七年級(jí)成績(jī)超過(guò)平均數(shù)76.9分的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com