【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,ABAD,C120°,點E在上.

(1)求∠AED的度數(shù);

(2)若⊙O的半徑為2,則的長為多少?

(3)連接ODOE,當∠DOE90°時,AE恰好是⊙O內(nèi)接正n邊形的一邊,求n的值.

【答案】(1) 120°;(2);(3)12

【解析】試題分析:(1)連接AC,AB=AD可得到∠ACB=ACD=60°,在四邊形ACBE中由對角互補可求得∠AEB,(2)因為 ∠AOD=2ABD=120°,半斤為2,根據(jù)弧長公式即可求解.

3)連接OA,求出∠AOE的度數(shù)即可求出正n邊形的邊數(shù).

連接BD,∵四邊形ABCD O的內(nèi)接四邊形,

∴∠BAD+C=180°,

∵∠C=120°,

∴∠BAD=60°,

AB=AD,

∴△ABD是等邊三角形,

∴∠ABD=60°,

∵四邊形ABDE O的內(nèi)接四邊形,

∴∠AED+ABD=180°,

∴∠AED=120°,

(2) ∵∠AOD=2ABD=120°,

∴弧AD的長=,

(3)連接OA,

∵∠ABD=60°,

∴∠AOD=2ABD=120°,

∵∠DOE=90°,

∴∠AOE=AOD-DOE=30°,

n=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線軸交于O點、A點,B為拋物線上一點,Cy軸上一點,連接BC,且BC//OA,已知點O(0,0),A(6,0),B(3,m),AB=.

(1)求B點坐標及拋物線的解析式.,

(2)MCB上一點,過點My軸的平行線交拋物線于點E,求DE的最大值;

(3)坐標平面內(nèi)是否存在一點F,使得以C、B、D、F為頂點的四邊形是菱形?若存在,求出符合條件的點F坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的骰子,骰子的六個面分別刻有1到6的點數(shù),朝上的面的點數(shù)中,一個點數(shù)能被另一個點數(shù)整除的概率是 

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC為等邊三角形,點D為直線BC上一動點(點D不與B,C重合),以AD為邊作菱形ADEF(A,D,E,F(xiàn)按逆時針排列),使∠DAF=60°,直線EF與直線BC交于H.

(1)如圖①,當點D在邊BC上時,試說明:;

(2)如圖②,當點D在邊BC的延長線上且其他條件不變時,結(jié)論;是否成立?若成立,請說明理由;若不成立,請寫出AD、DH、AC之間存在的數(shù)量關(guān)系;

(3)如圖③,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AD、DH、AC之間存在的數(shù)量關(guān)系.

1 2 3

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�