【題目】已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).

(1)發(fā)現(xiàn):如圖1,當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上時(shí),△ABE與△ADG的面積關(guān)系是:
(2)引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個(gè)角度時(shí),△ABE與△ADG的面積關(guān)系是:
(3)如圖3,四邊形ABMN、四邊形DEAC、四邊形BFGC均為正方形,則SABC、SAEN、SBMF、SDCG的關(guān)系是;
(4)運(yùn)用:某小區(qū)中有一塊空地,要在其中建三個(gè)正方形健身場(chǎng)所(如圖3),其余空地修成草坪.若已知其中一個(gè)正方形的邊長(zhǎng)為5m,另一個(gè)正方形的邊長(zhǎng)為4m,則草坪的最大面積是

【答案】
(1)△ABE的面積=△ADG的面積
(2)△ABE的面積=△ADG的面積
(3)SABC=SAEN=SBMF=SDCG
(4)30m2
【解析】解:(1)∵正方形ABCD和正方形AEFG有公頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn),E點(diǎn)旋轉(zhuǎn)到DA的延長(zhǎng)線上
∴AE=AG,AB=AD,∠EAB=∠GAD=90°,
在△ABE和△ADG中
∴△ABE≌△ADG(SAS),
∴△ABE的面積=△ADG的面積;
所以答案是:△ABE的面積=△ADG的面積;
⑵結(jié)論仍然成立.理由如下:
作GH⊥DA交DA的延長(zhǎng)線于H,EP⊥BA交BA的延長(zhǎng)線于P,如圖所示,
∵∠PAD=90°,∠EAG=90°,
∴∠PAE=∠GAH,
在△AHG和△AEP中, ,
∴△AHG≌△AEP(AAS),
∴GH=BP,
∵△ABE的面積= EPAB,△ADG的面積= GHAD,
∴△ABE的面積=△ADG的面積;
所以答案是:△ABE的面積=△ADG的面積;
⑶由(2)得:SABC=SAEN=SBMF=SDCG ,
所以答案是:SABC=SAEN=SBMF=SDCG
⑷∵AB=5m,AC=4m,
∴△ABC的面積= ×5×4×sin∠BAC=10sin∠BAC,
當(dāng)sin∠BAC=1時(shí),△ABC的面積的最大值為10,
根據(jù)(2)中的結(jié)論得到陰影部分的面積和的最大值=△ABC的面積的3倍=3×10=30m2
所以答案是:30m2

【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形),還要掌握銳角三角函數(shù)的定義(銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了深入貫徹黨的十八大精神,我省某中學(xué)為了深入學(xué)習(xí)社會(huì)主義核心價(jià)值觀,特對(duì)本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識(shí)的測(cè)試(成績(jī)分為A,B,C,D,E五個(gè)組,x表示測(cè)試成績(jī)),通過(guò)對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調(diào)查測(cè)試的學(xué)生共有人;請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整.
(2)本次調(diào)查測(cè)試成績(jī)的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請(qǐng)估計(jì)全校測(cè)試成績(jī)?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平行四邊形ABCD中,∠B=60°,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,角的兩邊所在的兩直線分別交線段AB、AD于點(diǎn)E、F(不包括線段的端點(diǎn)).

(1)問(wèn)題發(fā)現(xiàn):
如圖1,若平行四邊形ABCD為菱形,
試猜想線段AE、AF、AC之間的數(shù)量關(guān)系 ,請(qǐng)證明你的猜想.

(2)類比探究:
如圖2,若AB:AD=1:2,過(guò)點(diǎn)C作CH⊥AD于點(diǎn)H,求AE:FH的比值;
(3)拓展延伸:
如圖3,若AB:AD=1:4,請(qǐng)直接寫(xiě)出(AE+4AF):AC的比值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: +(tan60﹣1)0+| ﹣1|﹣2cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副直角三角尺如圖放置,已知AE∥BC,則∠AFD的度數(shù)是(
A.45°
B.50°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將半徑為6的⊙O沿AB折疊,弧AB與AB垂直的半徑OC交于點(diǎn)D且CD=2OD,則折痕AB的長(zhǎng)為( )

A.  
B.
C.6   
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于坐標(biāo)平面內(nèi)的點(diǎn),現(xiàn)將該點(diǎn)向右平移1個(gè)單位,再向上平移2的單位,這種點(diǎn)的運(yùn)動(dòng)稱為點(diǎn)A的斜平移,如點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5),已知點(diǎn)A的坐標(biāo)為(1,0).

(1)分別寫(xiě)出點(diǎn)A經(jīng)1次,2次斜平移后得到的點(diǎn)的坐標(biāo).
(2)如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對(duì)稱點(diǎn)的點(diǎn)B,點(diǎn)B關(guān)于直線l的對(duì)稱軸為點(diǎn)C.
①若A、B、C三點(diǎn)不在同一條直線上,判斷△ABC是否是直角三角形?請(qǐng)說(shuō)明理由.
②若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),求出點(diǎn)B的坐標(biāo)及n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BD于點(diǎn)E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: = ;
(2)求證:AF⊥FM;
(3)請(qǐng)?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過(guò)程中,當(dāng)∠BAM等于多少度時(shí),∠FMN=∠BAM?寫(xiě)出你的探索結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一樓房AB后有一假山,其斜坡CD坡比為1: ,山坡坡面上點(diǎn)E處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=6米,與亭子距離CE=20米,小麗從樓房頂測(cè)得點(diǎn)E的俯角為45°.
(1)求點(diǎn)E距水平面BC的高度;
(2)求樓房AB的高.(結(jié)果精確到0.1米,參考數(shù)據(jù) ≈1.414, ≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案