【題目】如圖,將沿過點的直線折疊,使點落到邊上的處,折痕交邊于點,連接.
(1)求證:四邊形是平行四邊形;
(2)若平分,求證:.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)利用翻折變換的性質(zhì)以及平行線的性質(zhì)得出∠DAE=∠EAD′=∠DEA=∠D′EA,進而利用平行四邊形的判定方法得出四邊形DAD′E是平行四邊形,進而求出四邊形BCED′是平行四邊形;
(2)利用平行線的性質(zhì)結合勾股定理得出答案.
(1)∵將ABCD沿過點A的直線l折疊,使點D落到AB邊上的點D′處,
∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,
∵DE∥AD′,
∴∠DEA=∠EAD′,
∴∠DAE=∠EAD′=∠DEA=∠D′EA,
∴∠DAD′=∠DED′,
∴四邊形DAD′E是平行四邊形,
∴DE=AD′,
∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴CE ∥D′B,
∴四邊形BCED′是平行四邊形;
(2)∵BE平分∠ABC,
∴∠CBE=∠EBA,
∵AD∥BC,
∴∠DAB+∠CBA=180°,
∵∠DAE=∠BAE,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∴AB2=AE2+BE2.
科目:初中數(shù)學 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關系如圖1所示,成本y2與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程:(1)3x2-5x+2=0;(2)(7x+3)2=2(7x+3);
(3)t2-t-=0;(4)(y+1)(y-1)=2y-1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】3 月初某商品價格上漲,每件價格上漲 20%.用 3000 元買到的該商品 件數(shù)比漲價前少 20 件.3 月下旬該商品開始降價,經(jīng)過兩次降價后,該商品價格為每 件 19.2 元.
(1)求 3 月初該商品上漲后的價格;
(2)若該商品兩次降價率相同,求該商品價格的平均降價率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊長為6,點A、C分別在x軸,y軸的正半軸上,點D(2,0)在OA上,P是OB上一動點,則PA+PD的最小值為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形 ABCD 的邊長為 2,以點 A 為圓心,1 為半徑作圓,點 E 是⊙A 上的任意 一點,點 E 繞點 D 按逆時針方向轉轉 90°,得到點 F,接 AF,則 AF 的最大值是______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形 ABCD 的對角線交于點 E,且 AE=EC,BE=ED,以 AD 為直徑的半圓過點 E,圓心 為 O.
(1)如圖①,求證:四邊形 ABCD 為菱形;
(2)如圖②,若 BC 的延長線與半圓相切于點 F,且直徑 AD=6,求弧AE 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC底邊BC上的高為16 cm,當BC的長x(cm)從小到大變化時,△ABC的面積y(cm2)也隨之發(fā)生變化.
(1)在這個變化過程中,常量是________,自變量是________,因變量是_________;
(2)寫出y與x之間的關系式為_______________;
(3)當x=5 cm時,y=________cm2;當x=15 cm時,y=________cm2;y隨x的增大而__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】時代中學從學生興趣出發(fā),實施體育活動課走班制.為了了解學生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學生中,隨機抽取了若干名學生進行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結果統(tǒng)計如下:
球類名稱 | 乒乓球 | 羽毛球 | 排球 | 籃球 | 足球 |
人數(shù) | 42 | 15 | 33 |
解答下列問題:
(1)這次抽樣調(diào)查中的樣本是________;
(2)統(tǒng)計表中,________,________;
(3)試估計上述1200名學生中最喜歡乒乓球運動的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com