【題目】如圖,已知矩形AOBC的三個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(0,6),B(8,0),按以下步驟作圖:
①以點(diǎn)O為圓心,適當(dāng)長度為半徑作弧,分別交OC,OB于點(diǎn)D,E;
②分別以點(diǎn)D,E為圓心,大于DE的長為半徑作弧,兩弧在∠BOC內(nèi)交于點(diǎn)F;
③作射線OF,交邊BC于點(diǎn)G,則點(diǎn)G的坐標(biāo)為_____.
【答案】(8,)
【解析】
如圖,過點(diǎn)G作GH⊥OC于H.解直角三角形求出OC=10,證明△OGB≌△OGH(AAS),推出OH=OB=8,BG=GH,設(shè)BG=GH=x,在Rt△GCH中,利用勾股定理構(gòu)建方程即可解決問題.
解:如圖,過點(diǎn)G作GH⊥OC于H.
∵A(0,6),B(8,0),
∴OA=6,OB=8,
∵四邊形OACB是矩形,
∴∠OBC=90°,BC=OA=6,
∴OC
∵∠GOB=∠GOH,∠OBG=∠OHG=90°,OG=OG,
∴△OGB≌△OGH(AAS),
∴OH=OB=8,BG=GH,設(shè)BG=GH=x,
在Rt△GCH中,∵∠GHC=90°,CH=OC﹣OH=2,CG=6﹣x,
∴ ,
∴x=,
∴G(8,).
故答案為:(8,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,設(shè)P、Q同時(shí)出發(fā)t秒時(shí),BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系圖象如圖2所示(其中曲線OG為拋物線的一部分,其余各部分均為線段)所示,則下列結(jié)論:①BEBC;②當(dāng)t6秒時(shí),ABE PQB;③點(diǎn)P運(yùn)動(dòng)了18秒;④當(dāng)t秒時(shí),ABE∽QBP.其中正確的是( ).
A.①②B.①③④C.③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解初中學(xué)生每天在校體育活動(dòng)的時(shí)間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為___________,圖①中m的值為_____________;
(Ⅱ)求統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計(jì)該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動(dòng)點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);
②如圖,過點(diǎn),的直線交于點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果,⊙O是△ABC的外接圓,∠A=45°,BD∥OC交AC的延長線于點(diǎn)D.
(1)求證:BD是⊙O的切線;
(2)若∠D=30°,OC=2.
①求∠ABC的度數(shù);
②求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與y軸的交點(diǎn)為A(0,3),與x軸的交點(diǎn)分別為B(2,0),C(6,0).直線AD∥x軸,在x軸上位于點(diǎn)B右側(cè)有一動(dòng)點(diǎn)E,過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P,Q.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E在線段BC上時(shí),求△APC面積的最大值;
(3)是否存在點(diǎn)P,使以A,P,Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=2x與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A,將y=2x的圖象向下平移6個(gè)單位后與反比例函數(shù)y═(x>0)交于點(diǎn)B,與x軸交于點(diǎn)C,若OA=2BC,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個(gè)數(shù)有( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“新型冠狀病毒肺炎”疫情牽動(dòng)著億萬國人的心,為進(jìn)一步加強(qiáng)疫情防控工作,蘭州市某學(xué)校利用網(wǎng)絡(luò)平臺(tái)進(jìn)行疫情防控知識(shí)測(cè)試.洪濤同學(xué)對(duì)九年級(jí)1班和2班全體學(xué)生的測(cè)試成績數(shù)據(jù)進(jìn)行了收集、整理和分析,研究過程中的部分?jǐn)?shù)據(jù)如下.
信息一:疫情防控知識(shí)測(cè)試題共10道題目,每小題10分;
信息二:兩個(gè)班級(jí)的人數(shù)均為40人;
信息三:九年級(jí)1班成績頻數(shù)分布直方圖如圖,
信息四:九年級(jí)2班平均分的計(jì)算過程如下,
80.5(分);
信息五:
統(tǒng)計(jì)量 班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
九年級(jí)1班 | 82.5 | m | 90 | 158.75 |
九年級(jí)2班 | 80.5 | 75 | n | 174.75 |
根據(jù)以上信息,解決下列問題:
(1)m= ,n= ;
(2)你認(rèn)為哪個(gè)班級(jí)的成績更加穩(wěn)定?請(qǐng)說明理由;
(3)在本次測(cè)試中,九年級(jí)1班甲同學(xué)和九年級(jí)2班乙同學(xué)的成績均為80分,你認(rèn)為兩人在各自班級(jí)中誰的成績排名更靠前?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com