【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點分別為(﹣1,0),(3,0),對于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當(dāng)x1時,yx的增大而減。黄渲姓_的有(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

根據(jù)拋物線的對稱性得到拋物線的對稱軸為直線x=1,根據(jù)拋物線對稱軸方程得到﹣=1,則可對進(jìn)行判斷;由拋物線開口方向得到a<0,由b=﹣2a得到b>0,由拋物線與y軸的交點在x軸上方得到c>0,則可對進(jìn)行判斷;利用x=1時,y>0可對進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對進(jìn)行判斷.

解:二次函數(shù)的圖象與x軸的兩個交點分別為(﹣1,0),(3,0),

拋物線的對稱軸為直線x=1,

∴﹣=1,即2a+b=0,正確;

拋物線開口向下,

∴a<0,

∵b=﹣2a,

∴b>0,

拋物線與y軸的交點在x軸上方,

∴c>0,

∴abc<0,正確;

∵x=1時,y>0,

∴a+b+c>0,正確;

拋物線的對稱軸為直線x=1,拋物線開口向下,

當(dāng)x>1時,yx的增大而減小,故正確.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△BCP在正方形ABCD內(nèi),則∠APD_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一幅長80cm,寬50cm的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如果要使整個掛圖的面積是ycm2,設(shè)金色紙邊的寬為xcm,要求紙邊的寬度不得少于1cm,同時不得超過2cm.

(1)求出y關(guān)于x的函數(shù)解析式,并直接寫出自變量的取值范圍;

(2)此時金色紙邊的寬應(yīng)為多少cm時,這幅掛圖的面積最大?求出最大面積的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在RtΔABC,∠C=90°,以AC為直徑作⊙O,ABD,OOEABBCE

1求證ED是⊙O的切線;

2如果⊙O的半徑為1.5ED=2,AB的長

32的條件下,ADO的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊△ADE,則ABE為()

A.100B.150C.200D.250

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個取水點A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,給出下列說法:

①ab>0;

方程ax2+bx+c=0的根為x1=﹣1,x2=3;

③a+b+c>0;

當(dāng)x>1時,隨x值的增大而增大.

其中正確的說法有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB、C三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時,甲車到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時間后兩車同時到達(dá)C地,設(shè)兩車之間的距離為y(千米),甲行駛的時間x(小時).yx的關(guān)系如圖所示,則BC兩地相距_____千米.

查看答案和解析>>

同步練習(xí)冊答案