【題目】如圖,O為正方形ABCD對角線的交點(diǎn),E為AB邊上一點(diǎn),F為BC邊上一點(diǎn),△EBF的周長等于BC的長.
(1)若AB=12,BE=3,求EF的長;
(2)求∠EOF的度數(shù);
(3)若OE=OF,求的值.
【答案】(1)EF =5;(2)∠EOF=45°;(3).
【解析】
(1)設(shè)BF=x,則FC=BC﹣BF=12﹣x,根據(jù)BE=3,且BE+BF+EF=BC,表示出
EF,在Rt△BEF中,根據(jù)勾股定理即可求出,即可求出EF的長;
(2)如圖,在FC上截取FM=FE,連接OM,分別證明△OBE≌△OCM,△OFE≌△OFM,根據(jù)全等三角形的性質(zhì)即可求出∠EOF的度數(shù);
(3)證明△AOE∽△CFO.根據(jù)相似三角形的性質(zhì)得到
即可求出的值.
(1)設(shè)BF=x,則FC=BC﹣BF=12﹣x,
∵BE=3,且BE+BF+EF=BC,
∴EF=9﹣x,
在Rt△BEF中,由BE2+BF2=EF2可得32+x2=(9﹣x)2,
解得:x=4,
則EF=9﹣x=5;
(2)如圖,在FC上截取FM=FE,連接OM,
∵C△EBF的周長=BE+EF+BF=BC,則BE+EF+BF=BF+FM+MC,
∴BE=MC,
∵O為正方形中心,
∴OB=OC,∠OBE=∠OCM=45°,
在△OBE和△OCM中,
∵
∴△OBE≌△OCM,
∴∠EOB=∠MOC,OE=OM,
∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,
在△OFE與△OFM中,
∵
∴△OFE≌△OFM(SSS),
∴
(3)證明:由(2)可知:∠EOF=45°,
∴∠AOE+∠FOC=135°,
∵∠EAO=45°,
∴∠AOE+∠AEO=135°,
∴∠FOC=∠AEO,
∵∠EAO=∠OCF=45°,
∴△AOE∽△CFO.
∴
∴
∵AO=CO,
∴
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°.
(1)在斜邊AB上確定一點(diǎn)E,使點(diǎn)E到點(diǎn)B距離和點(diǎn)E到AC的距離相等;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)在(1)的條件下,若BC=6,AC=8,點(diǎn)E到AC的距離為ED,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在紙板中,,,,是上一點(diǎn),過點(diǎn)沿直線剪下一個(gè)與相似的小三角形紙板,如果有種不同的剪法,那么長的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為點(diǎn),點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為點(diǎn),點(diǎn)和分別以每秒和的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到達(dá)相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),分別過和作于,于.設(shè)運(yùn)動(dòng)時(shí)間為秒,要使以點(diǎn),,為頂點(diǎn)的三角形與以點(diǎn),,為頂點(diǎn)的三角形全等,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),若一個(gè)點(diǎn)到一條直線的距離不大于1,則稱這個(gè)點(diǎn)是該直線的“伴侶點(diǎn)”.
在平面直角坐標(biāo)系中,已知點(diǎn)M(1,0),過點(diǎn)M作直線l平行于y軸,點(diǎn)A(﹣1,a),點(diǎn)B(b,2a),點(diǎn) C(﹣,a﹣1),將三角形ABC進(jìn)行平移,平移后點(diǎn)A的對應(yīng)點(diǎn)為D,點(diǎn)B的對應(yīng)點(diǎn)為E,點(diǎn)C的對應(yīng)點(diǎn)為F.
(1)試判斷點(diǎn)A是否是直線l的“伴侶點(diǎn)”?請說明理由;
(2)若點(diǎn)F剛好落在直線l上,F的縱坐標(biāo)為a+b,點(diǎn)E落在x軸上,且三角形MFD的面積為,試判斷點(diǎn)B是否是直線l的“伴侶點(diǎn)”?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥享有“中國淡水龍蝦之都”的美稱.甲乙兩家小龍蝦美食店,平時(shí)以同樣的價(jià)格出售品質(zhì)相同的小龍蝦,“龍蝦節(jié)”期間,甲乙兩家店都讓利酬賓,在人數(shù)不超過20人的前提下,付款金額y甲,y乙(單位元)與人數(shù)之間的函數(shù)關(guān)系如圖所示.
(1)直接寫出y甲,y乙關(guān)于x的函數(shù)關(guān)系式.
(2)小王公司想在“龍蝦節(jié)”期間組織團(tuán)建,在甲乙兩家店就餐,如何選擇甲乙兩家美食店吃小龍蝦更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1所示的是某超市入口的雙翼閘門,如圖2,當(dāng)它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)A與B 之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°,求當(dāng)雙翼收起時(shí),可以通過閘機(jī)的物體的最大寬度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段繞點(diǎn)順時(shí)針方向旋轉(zhuǎn),則點(diǎn)對應(yīng)的坐標(biāo)為( )
A. (-3,-4) B. (3,4) C. (4,3) D. (-4,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com