【題目】如圖,在ABCD中,∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F,求證:四邊形BEDF是平行四邊形.
【答案】見解析
【解析】
根據(jù)平行四邊形的性質(zhì)得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根據(jù)角平分線的定義求出∠ADF=∠EBC,求出∠AEB=∠ADF,根據(jù)平行線的判定得出BE∥DF,根據(jù)平行四邊形的判定得出即可.
∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC,AD∥BC,
∴DE∥BF,∠EBC=∠AEB,
∵∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F,
∴∠ADF=ADC,∠EBC=ABC,
∴∠ADF=∠EBC,
∴∠AEB=∠ADF,
∴BE∥DF,
∵DE∥BF,
∴四邊形BEDF是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,下列結(jié)論中:
①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,
正確的結(jié)論是_____(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為( 。
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植樹4~7棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.
回答下列問題:
(1)寫出條形圖中存在的錯(cuò)誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);
(3)求這20名學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°經(jīng)過點(diǎn)B的直線l(l不與直線AB重合)與直線BC的夾角等于∠ABC,分別過點(diǎn)C、A做直線l的垂線,垂足分別為點(diǎn)D、E.
(1)問題發(fā)現(xiàn):
①若∠ABC=30°,如圖①,則= ;
②∠ABC=45°,如圖②,則= ;
(2)拓展探究:
當(dāng)0°<∠ABC<90°,的值有無變化?請(qǐng)僅就圖③的情形給出證明.
(3)問題解決:
若直線CE、AB交于點(diǎn)F,=,CD=4,請(qǐng)直接寫出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tan∠OAC=.
(1)求拋物線的解析式;
(2)點(diǎn)H是線段AC上任意一點(diǎn),過H作直線HN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;
(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對(duì)稱軸上?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠將地處A,B兩地的兩個(gè)小工廠合成一個(gè)大廠,為了方便A,B兩地職工的聯(lián)系,企業(yè)準(zhǔn)備在相距2km的A,B兩地之間修一條筆直的公路(即圖中的線段AB),經(jīng)測(cè)量在A地的北偏東60°方向,B地的北偏西45°方向的C處有一以C點(diǎn)為中心,半徑為0.7km的圓形公園,則修筑的這條公路會(huì)不會(huì)穿過公園?為什么?(提示:判斷以點(diǎn)C為圓心的圓與AB的關(guān)系)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小聰拿著老師的等腰直角三角板玩,不小心掉到兩墻之間(如圖),已知,∠ACB=90°,AC=BC, AB=26.如果每塊磚的厚度相等,磚縫厚度忽略不計(jì),那么砌墻磚塊的厚度為( )
A.B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)4為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并廷長(zhǎng)交BC于點(diǎn)E,連接EF
(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;
(2)若AB=2,AE=2,求∠BAD的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com