【題目】解方程:
(1)x2+2x=0;
(2)x2-x-1=0.

【答案】
(1)

解:x(x+2)=0

∴x1=0或x2=-2


(2)

解:∵a=1,b=-1,c=-1

∴Δ=b2-4ac=(-1)2-4×1×(-1)=5

x=

x1= 或x2=


【解析】(1)此方程用因式分解法比較簡(jiǎn)單而且不易出錯(cuò),注意不要丟掉x1=0這個(gè)根;
(2)此方程即可用公式法,也可用配方法來(lái)解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解公式法(要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無(wú)實(shí)根便得知.有實(shí)根可套公式,沒(méi)有實(shí)根要告之),還要掌握因式分解法(已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+ 與直線AB交于點(diǎn)A(﹣1,0),B(4, ),點(diǎn)D是拋物線A、B兩點(diǎn)間部分上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),直線CD與y軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的表達(dá)式;
(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時(shí)的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA勻速移動(dòng),當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng),DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,
設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:( ﹣π)0﹣6tan30°+( 2+|1+ |.
(2)解不等式組 ,并寫(xiě)出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△DEF均是邊長(zhǎng)為4的等邊三角形,△DEF的頂點(diǎn)D為△ABC的一邊BC的中點(diǎn),△DEF繞點(diǎn)D旋轉(zhuǎn),且邊DF,DE始終分別交△ABC的邊AB,AC于點(diǎn)H,G,圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對(duì)稱.連結(jié)HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點(diǎn)I,J.

(1)求證:△DHB∽△GDC;
(2)設(shè)CG=x,四邊形HH′G′G的面積為y,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍.
②求當(dāng)x為何值時(shí),y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:兩條拋物線頂點(diǎn)都在直線y=x上,且兩條拋物線關(guān)于原點(diǎn)成中心對(duì)稱,則稱這兩條拋物線為一對(duì)“友好拋物線”.

(1)拋物線y=2(x-1)2+1如圖1所示,請(qǐng)畫(huà)出它的“友好拋物線”,并直接寫(xiě)出它的解析式;
(確認(rèn)無(wú)誤后,請(qǐng)用黑色水筆描黑)
(2)一對(duì)“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對(duì)“友好拋物線”與y軸交點(diǎn)記為A,B,記AB=n(當(dāng)A與B重合時(shí),記n=0),現(xiàn)我們來(lái)探究n與h的關(guān)系;
①當(dāng)h≥0時(shí),如圖2所示,求n與h的函數(shù)關(guān)系式;
②當(dāng)h<0時(shí),求n與h的函數(shù)關(guān)系式;
(3)在(2)的條件下,要使 ≤n≤ ,試直接寫(xiě)出h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),請(qǐng)用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣1,0),AB=4,請(qǐng)求出該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,Rt△ABC的項(xiàng)點(diǎn)均在格點(diǎn)上.A(﹣6,1)B(﹣3,1)C(﹣3,3)

(1)將Rt△ABC沿x軸正方向平移5個(gè)單位長(zhǎng)度后得到Rt△A1B1C1 . 試在圖中畫(huà)出Rt△A1B1C1 , 并寫(xiě)出C1點(diǎn)的坐標(biāo);
(2)將Rt△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2 . 試在圖中畫(huà)出Rt△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多邊形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,過(guò)點(diǎn)E作EF∥CB交AB于點(diǎn)F,F(xiàn)B=1,過(guò)AE上的點(diǎn)P作PQ∥AB交線段EF于點(diǎn)O,交折線BCD于點(diǎn)Q,設(shè)AP=x,POOQ=y.

(1)①延長(zhǎng)BC交ED于點(diǎn)M,則MD= , DC=

(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)a≤x≤ (a>0)時(shí),9a≤y≤6b,求a,b的值;
(4)當(dāng)1≤y≤3時(shí),請(qǐng)直接寫(xiě)出x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案