【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,請用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點,其中點A的坐標(biāo)為(﹣1,0),AB=4,請求出該二次函數(shù)的表達(dá)式及頂點坐標(biāo).

【答案】
(1)解:∵二次函數(shù)的圖象與x軸只有一個交點,

∴△=m2+4n=0,

∴n=﹣ m2


(2)解:∵A(﹣1,0),AB=4,

∴B(3,0)或(﹣5,0).

將A(﹣1,0),B(3,0)代入y=﹣x2+mx+n得 ,解得 ,

∴二次函數(shù)為y=﹣x2+2x+3,頂點為(1,4),

將A(﹣1,0),B(﹣5,0)代入y=﹣x2+mx+n得 ,解得

∴二次函數(shù)為y=﹣x2﹣6x﹣5,頂點為(﹣3,4)


【解析】(1)由二次函數(shù)的圖象與x軸只有一個交點,所以△=0,由此即可解決問題.(2)求出點B坐標(biāo)有兩種情形,分別利用方程組解決問題即可.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小,以及對拋物線與坐標(biāo)軸的交點的理解,了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD相交于點0,過點O作OE⊥AC交AB于E,若BC=4,△AOE的面積為6,則cos∠BOE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下面各題
(1)計算:|1﹣ |+( 1﹣2cos30°.
(2)化簡:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)x2+2x=0;
(2)x2-x-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的已知、求證,并完成證明過程.
命題:如果一個三角形的兩條邊相等,那么兩條邊所對的角也相等(簡稱:“等邊對等角”.)
(1)已知:
求證:
(2)證明:“等邊對等角”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個點先繞原點逆時針旋轉(zhuǎn)45°,再作出旋轉(zhuǎn)后的點關(guān)于原點的對稱點,這稱為一次變換,已知點A的坐標(biāo)為(﹣1,0),則點A經(jīng)過連續(xù)2016次這樣的變換得到的點A2016的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABCD中,點E為AD的中點,連接BE,交AC于點F,則AF:CF=(

A.1:2
B.1:3
C.2:3
D.2:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】M為雙曲線y= 上的一點,過點M作x軸、y軸的垂線,分別交直線y=﹣x+m于點D,C兩點,若直線y=﹣x+m與y軸交于點A,與x軸相交于點B.

(1)求ADBC的值.
(2)若直線y=﹣x+m平移后與雙曲線y= 交于P、Q兩點,且PQ=3 ,求平移后m的值.
(3)若點M在第一象限的雙曲線上運動,試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標(biāo);如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以A點為圓心,以相同的長為半徑作弧,分別與射線AM,AN交于B,C兩點,連接BC,再分別以B,C為圓心,以相同長(大于 BC)為半徑作弧,兩弧相交于點D,連接AD,BD,CD.則下列結(jié)論錯誤的是(

A.AD平分∠MAN
B.AD垂直平分BC
C.∠MBD=∠NCD
D.四邊形ACDB一定是菱形

查看答案和解析>>

同步練習(xí)冊答案