【題目】如圖,RtOAB的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,AOB=90°,AO=2BO,當(dāng)A點(diǎn)在反比例函數(shù)y=(x0)的圖象上移動(dòng)時(shí),B點(diǎn)坐標(biāo)滿(mǎn)足的反比例函數(shù)解析式為( )

A.y=﹣(x0) B.y=﹣(x0)

C.y=﹣(x0) D.y=﹣(x0)

【答案】B

【解析】

試題分析:過(guò)點(diǎn)A作ACx軸于點(diǎn)C,過(guò)點(diǎn)B作BDx軸于點(diǎn)D,設(shè)B點(diǎn)坐標(biāo)滿(mǎn)足的函數(shù)解析式是y=,易得AOC∽△OBD,然后由相似三角形面積比等于相似比的平方,求得S△AOC:S△BOD=4,繼而求得答案.

解:如圖,過(guò)點(diǎn)A作ACx軸于點(diǎn)C,過(guò)點(diǎn)B作BDx軸于點(diǎn)D,

設(shè)B點(diǎn)坐標(biāo)滿(mǎn)足的函數(shù)解析式是y=,

∴∠ACO=BDO=90°,

∴∠AOC+OAC=90°,

∵∠AOB=90°,

∴∠AOC+BOD=90°,

∴∠BOD=OAC,

∴△AOC∽△OBD,

S△AOC:S△BOD=,

AO=2BO,

S△AOC:S△BOD=4,

當(dāng)A點(diǎn)在反比例函數(shù)y=(x0)的圖象上移動(dòng),

S△AOC=OCAC=x=,

S△BOD=DOBD=(﹣x)=﹣k,

=4×(﹣k),解得k=﹣

B點(diǎn)坐標(biāo)滿(mǎn)足的函數(shù)解析式y(tǒng)=﹣(x0).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出命題“兩直線平行,同位角相等”的結(jié)論部分:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正多邊形的一個(gè)內(nèi)角等于140°,則這個(gè)正多邊形的邊數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):

A0,3);B5,0);C3﹣5);D﹣3,﹣5);E35);

2A點(diǎn)到原點(diǎn)的距離是   

3)將點(diǎn)Cx軸的負(fù)方向平移6個(gè)單位,它與點(diǎn)   重合.

4)連接CE,則直線CEy軸是什么位置關(guān)系?

5)點(diǎn)D分別到xy軸的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村原有林地108公頃,旱地54公頃,為保護(hù)環(huán)境,需把一部分旱地改造為林地,使旱地面積占林地面積的20%.設(shè)把x公頃旱地改為林地,則可列方程(

A54x=20108 B54x=20%(108+x C54+x=20162 D108x=20%(54+x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“一次拋六枚均勻的骰子,朝上一面的點(diǎn)數(shù)都為6”這一事件是( )
A.必然事件
B.隨機(jī)事件
C.確定事件
D.不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)凸多邊形的每一個(gè)內(nèi)角都等于140°,那么從這個(gè)多邊形的一個(gè)頂點(diǎn)引出的對(duì)角線條數(shù)是(
A.5條
B.6條
C.9條
D.27條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張如圖1的長(zhǎng)為,寬為的小長(zhǎng)方形紙片,按圖2的方式不重疊地放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分兩個(gè)長(zhǎng)方用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則,滿(mǎn)足( )

A. B.=2 C=3 D.=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知5名學(xué)生的體重分別是41、50、53、49、67(單位:kg),則這組數(shù)據(jù)的極差是( )
A.8
B.9
C.26
D.41

查看答案和解析>>

同步練習(xí)冊(cè)答案