【題目】如圖,在四邊形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于點E,F為CD的中點,連接EF、BF.
(1)求證:四邊形ABCD是平行四邊形;
(2)求證:BF平分∠ABC;
(3)請判斷△BEF的形狀,并證明你的結(jié)論.
【答案】(1)見解析;(2)見解析;(3)ΔBEF為等腰三角形,見解析.
【解析】
(1)由平行線的性質(zhì)得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,證出AB//BC,即可得出四邊形ABCD是平行四邊形;
(2)由平行四邊形的性質(zhì)得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,證出∠ABF=∠CBF即可;
(3)作FG⊥BE于G,證出FG/AD//BC,得出EG=BG,由線段垂直平分線的性質(zhì)得出EF=BF即可.
解:(1)證明:∵AD∥BC,
∴∠A+∠ABC=180°:
∵∠A=∠C
∴∠C+∠ABC=180°
∴AB∥CD
∴四邊形ABCD是平行四邊形
(2)證明:
∵F點為CD中點
∴CD=2CF
∴CD=2AD
∴CF=AD=BC
∴∠CFB=∠CBF
∴CD∥AB
∴∠CFB=∠FBA
∴∠FBA=∠CBF
∴BF平分∠ABC
(3)ΔBEF為等腰三角形
理由:如圖,延長EF交B延長線于點G
∴DA∥BG
∴∠G=∠DEF
∵F為DC中點
∴DF=CF
又∵∠DFE=∠CFG
∴ΔDFE≌ΔCFG(AAS)
∴FE=FG
∵AD∥BC,BE⊥AD
∴BE⊥CD
∴∠EBG=90°
在RtΔEBG中,F為BG中點
∴BF=EG=EF
∴ΔBEF為等腰三角形。
科目:初中數(shù)學 來源: 題型:
【題目】今年的 “十一”黃金周是天的長假,某風景區(qū)在天假期中每天旅游人數(shù)變化如表(正號表示人數(shù)比前一天多,符號表示比前一天少)
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化單位:萬人 |
(1)若月日的游客人數(shù)為萬人,則月日的旅客人數(shù)為_________萬人;
(2)八天中旅客人數(shù)最多的一天比最少的一天多_______萬人
(3)如果每萬人帶來的經(jīng)濟收入約為萬元,則黃金周八天的旅游總收入約為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數(shù)關(guān)系式;
②設將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在∠MON的兩邊上分別截取OA、OB,使OA=OB;分別以點A、B為圓心,OA長為半徑作弧,兩弧交于點C,連接AC、BC、AB、OC.若AB=2cm,四邊形OACB的周長為8cm.則OC的長為______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)2014年投入教育經(jīng)費2900萬元,2016年投入教育經(jīng)費3509萬元.
(1)求2014年至2016年該地區(qū)投入教育經(jīng)費的年平均增長率;
(2)按照義務教育法規(guī)定,教育經(jīng)費的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2018年需投入教育經(jīng)費4250萬元,如果按(1)中教育經(jīng)費投入的增長率,到2018年該地區(qū)投入的教育經(jīng)費是否能達到4250萬元?請說明理由.
(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,矩形CDEF的邊CD在CB上,且5CD=3CB,邊CF在軸上,且CF=2OC-3,反比例函數(shù)y= (k>0)的圖象經(jīng)過點B,E,則點E的坐標是____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AM是中線,AD是高線.
(1)若AB比AC長4 cm,則△ABM的周長比△ACM的周長多__________ cm.
(2)若△AMC的面積為12 cm2,則△ABC的面積為__________cm 2.
(3)若AD又是△AMC的角平分線,∠AMB=130°,求∠ACB的度數(shù).(寫過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 E,F 是ABCD 對角線上兩點,在條件①DE=BF;②∠ADE=∠CBF; ③AF=CE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com