【題目】復習課中,教師給出關于x的函數(shù)y=2kx2-(4k+1)x-k+1(k是實數(shù)).教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關的結論(性質(zhì))寫到黑板上.學生思考后,黑板上出現(xiàn)了一些結論,教師作為活動一員,又補充一些結論,并從中選出如下四條:
①存在函數(shù),其圖象經(jīng)過(1,0)點;
②存在函數(shù),該函數(shù)的函數(shù)值y始終隨x的增大而減小;
③函數(shù)圖象有可能經(jīng)過兩個象限;
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負數(shù).
其中正確的結論有

【答案】①②④
【解析】①將(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0,此選項正確.

②當k=0時,y=-x+1,該函數(shù)的函數(shù)值y始終隨x的增大而減;此選項正確;

③y=-x+1,經(jīng)過3個象限,此選項錯誤;

④當k=0時,函數(shù)無最大、最小值;k≠0時,y=- ,當k>0時,有最小值,最小值為負;當k<0時,有最大值,最大值為正;此選項正確.

正確的是①②④.


【考點精析】關于本題考查的一次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關系,需要了解一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為公共邊的三角形是____________;∠EFB____________的內(nèi)角;△BCE,BE所對的角是____________,∠CBE所對的邊是____________;∠A為公共角的三角形是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】環(huán)保健康的“共享單車”已成為人們短途出行的一種新方式,一輛新投放市場的單車其先期成本為1050元.如圖是一輛新投放的共享單車其運營收入w1和運營支出w2關于時間m的函數(shù)圖象.
注:一輛單車的盈利=運營收入﹣運營支出﹣先期成本
(1)分別求w1及運營60天后w2關于時間m的函數(shù)關系式.
(2)求一輛新投放市場的單車恰好收回先期成本需要運營多少天?
(3)某公司投放市場一批單車,其先期成本不少于2.1萬元但不超過10.5萬元,經(jīng)過一段時間的市場試運營共盈利3550元,則該公司試運營的天數(shù)為天(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為x=-1.給出四個結論:①b2 > 4ac;②2a+b=0;③a-b+c=0;④5a < b.其中正確結論有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小虎、小紅三人排成一排拍照片,小明站在中間的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點分別是邊上的點,點是一動點,令,

1)若點在線段上,如圖①所示,且,則_____;

2)若點在邊上運動,如圖②所示,則、、之間的關系為______;

3)如圖③,若點在斜邊的延長線上運動,請寫出、之間的關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】興隆商場用36萬元購進A、B兩種品牌的服裝,銷售完后共獲利6萬元,其進價和售價如下表:

該商場購進A、B兩種服裝各多少件?

(2)第二次以原價購進A、B兩種服裝,購進B服裝的件數(shù)不變,購進A服裝的件數(shù)是第一次的2倍,A種服裝按原價出售,而B種服裝打折銷售;若兩種服裝銷售完畢,要使第二次銷售活動獲利不少于81600元,則B種服裝最低打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=120°,OC是∠AOB內(nèi)部任意一條射線,OD,OE分別是∠AOC,∠BOC的角平分線,下列敘述正確的是(

A. AOD+BOE=60°B. AOD=EOC

C. BOE=2CODD. DOE的度數(shù)不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。

(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.

查看答案和解析>>

同步練習冊答案