【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).
【答案】(1)見解析;(2)∠BDF=18°.
【解析】
(1)先證明四邊形ABCD是平行四邊形,求出∠ABC=90°,然后根據(jù)矩形的判定定理,即可得到結論;
(2)求出∠FDC的度數(shù),根據(jù)三角形的內角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度數(shù).
(1)證明:∵AO=CO,BO=DO,
∴四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四邊形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四邊形ABCD是矩形,
∴CO=OD,
∴∠ODC=∠DCO=54°,
∴∠BDF=∠ODC﹣∠FDC=18°.
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD( ).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B=∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC延長線于F,且垂足為E,則下列結論:①AD=BF;②∠BAE=∠FBC;③S△ADB=S△ADC;④AC+CD=AB;⑤AD=2BE.其中正確的結論有______(填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索題:(x-1)((x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1.
(1)觀察以上各式并猜想:
①(x-1)(x6+x5+x4+x3+x2+x+1)=________________________;
②(x-1)(xn+xn-1+xn-2+…+x3+x2+x+1)= ________________________;
(2)請利用上面的結論計算:
①(-2)50+(-2)49+(-2)48+…+(-2)+1
②若x1007+x1006+…+x3+x2+x+1=0,求x2016的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分已知關于x的一元二次方程(m-2)x2+(2m+1)x+m=0有兩個實數(shù)根x1,x2.
(1)求m的取值范圍.
(2)若|x1|=|x2|,求m的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1+∠2=180o, ∠3=∠B,試說明∠DEC+∠C=180o.請完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+∠4=180o(平角定義)
∴∠2=∠4(________)
∴______∥______(_________)
∴∠3 = ∠ADE(__________)
又∵∠3=∠B(已知)
∴∠ADE=∠B(等量代換)
∴BC∥_____(_________)
∴∠DEC+∠C=180o(__________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直角三角形的鐵片ABC的兩條直角邊BC,AC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com