【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,AOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

【答案】1)見解析;(2)∠BDF18°.

【解析】

1)先證明四邊形ABCD是平行四邊形,求出∠ABC=90°,然后根據(jù)矩形的判定定理,即可得到結論;

2)求出∠FDC的度數(shù),根據(jù)三角形的內角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度數(shù).

1)證明:∵AOCO,BODO,

∴四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC,

∵∠ABC+ADC180°,

∴∠ABC=∠ADC90°,

∴四邊形ABCD是矩形;

2)解:∵∠ADC90°,∠ADF:∠FDC32,

∴∠FDC36°,

DFAC,

∴∠DCO90°﹣36°=54°,

∵四邊形ABCD是矩形,

COOD,

∴∠ODC=∠DCO54°,

∴∠BDF=∠ODC﹣∠FDC18°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1=2,∠B=C,可推得ABCD.理由如下:

∵∠1=2(已知),

且∠1=CGD   ),

∴∠2=CGD     ).

CEBF   ).

∴∠   =C   ).

又∵∠B=C(已知),

∴∠   =B(等量代換).

ABCD   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBC,∠ACB90°,AE平分∠BAC,BFAE,交AC延長線于F,且垂足為E,則下列結論:①ADBF;②∠BAE=∠FBC;③SADBSADC;④ACCDAB;⑤AD2BE.其中正確的結論有______(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索題:(x1)(x1)x21

(x1)(x2x1)x31,

x1)(x3x2x1)x41,

x1)(x4x3x2x1)x51.

1)觀察以上各式并猜想:

(x1)(x6x5x4x3x2x1)________________________;

(x1)(xnxn1xn2x3x2x1) ________________________

2)請利用上面的結論計算:

(250(2)49(2)48(2)1

②若x1007x1006x3x2x10,求x2016的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分已知關于x的一元二次方程(m-2)x2+(2m+1)x+m=0有兩個實數(shù)根x1x2

(1)求m的取值范圍.

(2)若|x1|=|x2|,求m的值及方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1+∠2180o, 3=∠B,試說明∠DEC+∠C180o.請完成下列填空:

解:∵∠1+∠2180o(已知)

又∵∠1+∠4180o(平角定義)

∴∠2=∠4(________)

____________(_________)

∴∠3 ADE(__________)

又∵∠3=∠B(已知)

∴∠ADE=∠B(等量代換)

BC_____(_________)

∴∠DEC+∠C180o(__________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角三角形的鐵片ABC的兩條直角邊BCAC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,延長平行四邊形的邊到點,使,連接于點

1)求證:

2)連接、,若,求證四邊形是矩形.

查看答案和解析>>

同步練習冊答案