【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
【答案】(1)詳見解析;(2)4
【解析】
(1)首先利用等腰三角形的性質和角平分線的定義得出∠EBC=∠OEB,然后得出OE∥BC,則有∠OEA=∠ACB=90°,則結論可證.
(2)連接OE、OF,過點O作OH⊥BF交BF于H,首先證明四邊形OHCE是矩形,則有,然后利用等腰三角形的性質求出BH的長度,再利用勾股定理即可求出OH的長度,則答案可求.
(1)證明:連接OE.
∵OE=OB,
∴∠OBE=∠OEB.
∵BE平分∠ABC,
∴∠OBE=∠EBC,
∴∠EBC=∠OEB,
∴OE∥BC,
∴∠OEA=∠ACB.
∵∠ACB=90°,
∴∠OEA=90°
∴AC是⊙O的切線;
(2)解:連接OE、OF,過點O作OH⊥BF交BF于H,
∵OH⊥BF,
.
∴四邊形OECH為矩形,
∴OH=CE.
∵,BF=6,
∴BH=3.
在Rt△BHO中,OB=5,
∴OH==4,
∴CE=4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的函數(shù)表達式;
(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,拋物線交軸于、(左右)兩點,交軸于點,,.
(1)求拋物線的解析式;
(2)點為第二象限拋物線上一點,連接、,交軸于點,過點做軸的垂線,垂足為點,過點做直線軸,在軸上方直線上取一點,連接,使,連接交軸于點,當時,求線段的長;
(3)在(2)的條件下,點為第二象限拋物線上的一點,連接,過點做于點,連接,線段、分別交線段于點、,當時,求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應值如表:
下列結論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)(k>0)的圖象與直線y=x-3相交與點A(4,m).
(1)求k、m的值;
(2)已知點P(a,a)(a>0),過點P作垂直于y軸的直線,交直線y=x-3于點M,過點P作垂直于x軸的直線,交函數(shù)(k>0)的圖象于點N.
①當a=1時,判斷PM與PN之間的數(shù)量關系,并說明理由;
②若PM≥PN,請結合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了九年級學生對A,B,C,D,E五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調查結果繪制了如下的兩個統(tǒng)計圖.
請根據(jù)圖中所提供的信息,完成下列問題:
(1)本次被調查的學生的人數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為 ;
(4)若該中學有4000名學生,請估計該校喜愛C,D兩類校本課程的學生共有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商將一種高檔水果放在商場銷售,該種水果成本價為10元,售價為40元,每天可銷售20.調查發(fā)現(xiàn),銷售單價每下降1元,每天的銷售量將增加5.
(1)直接寫出每天的銷售量ykg與降價(元)之間的函數(shù)關系式;
(2)降價多少元時,每天的銷售額元最大,最大是多少元?(銷售額=售價×數(shù)量)
(3)每銷售1水果,需向商場繳納柜臺費元(),水果商計劃租賃柜臺20天,為了促銷,決定開展“每天降價1元”活動,即從第1天開始,每天的銷售單價比前一天下降1元(第1天的銷售單價為39元),經測算發(fā)現(xiàn),銷售的前11天,每天的利潤元隨銷售天數(shù)(為正整數(shù))的增大而增大,試確定的取值范圍.(利潤=銷售額-成本-柜臺費)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:有代數(shù)式①;②;③;④.若從中隨機抽取兩個,用“=”連接.
(1)寫出能得到的一元二次方程;
(2)從(1)中得到的一元二次方程中挑選一個進行解方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com