【題目】如圖,AB為⊙O的直徑,點D在⊙O外,∠BAD的平分線與⊙O交于點C,連接BC、CD,且∠D=90°.
(1)求證:CD是⊙O的切線;
(2)若∠DCA=60°,BC=3,求的長.
【答案】(1)見解析;(2)π
【解析】
(1)連接OC,只需證明∠OCD=90°即可;
(2)由圓周角定理得出∠ACB=90°,即可求得∠OCB=60°,得到△OBC是等邊三角形,可求得半徑為3,弧BC的圓心角度數,再利用弧長公式求得結果即可.
解:(1)證明:連接OC,
∵AC是∠BAD的平分線,
∴∠CAD=∠BAC,
又∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠CAD,
∴OC∥AD,
∴∠OCD=∠D=90°,
∴CD是⊙O的切線;
(2)解:∵∠ACD=60°,
∴∠OCA=30°,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠OCB=60°,
∵OC=OB,
∴△OCB是等邊三角形,
∴OB=OC=BC=3,∠COB=60°,
∴的長:.
科目:初中數學 來源: 題型:
【題目】解方程:
(1)用開平方法解方程:
(2)用配方法解方程:x2 —4x+1=0
(3)用公式法解方程:3x2+5(2x+1)=0
(4)用因式分解法解方程:3(x-5)2=2(5-x)
(5)解方程:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校準備在教學樓后面搭建一個簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為19 m),另外三邊利用學,F有總長38 m的鐵欄圍成.
(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;
(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設計方,如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點P為△ABC內一點,∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中學生騎電動車上學的現象越來越受到社會的關注.為此某媒體記者小李隨機調查了城區(qū)若干名中學生家長對這種現象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調査結果繪制成圖①和圖②的統計圖(不完整)請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調査中.共調査了 名中學生家長;
(2)將圖①補充完整;
(3)根據抽樣調查結果.請你估計我市城區(qū)80000名中學生家長中有多少名家長持反對態(tài)度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中拋物線交x軸于點A、B,交y軸于點C, A、B兩點橫坐標為-1和3,C點縱坐標為-4.
(1)求拋物線的解析式;
(2)動點D在第四象限且在拋物線上,當△BCD面積最大時,求D點坐標,并求△BCD面積的最大值;
(3)拋物線的對稱軸上是否存在一點Q,使得∠QBC=45°,如果存在,求出點Q的坐標,不存在說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料
我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.
第一步:畫出函數y=2x2+x﹣2的圖象,發(fā)現圖象是一條連續(xù)不斷的曲線,且與x軸的一個
交點的橫坐標在0,1之間.
第二步:因為當x=0時,y=﹣2<0;當x=1時,y=1>0.
所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.
第三步:通過取0和1的平均數縮小x1所在的范圍;
取x=,因為當x=時,y<0,
又因為當x=1時,y>0,
所以<x1<1.
(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基礎上,重復應用第三步中取平均數的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數y=ax2+bx+c(a≠0)的圖象于x軸的交點坐標分別為(x1,0),(x2,0),且x1<x2,圖象上有一點M(x0,y0)在x軸下方,對于以下說法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正確的是( 。
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎上,進一步證明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com