【題目】如圖,MN是⊙O的直徑,若∠A=10°,∠PMQ=40°,以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是________邊形.

【答案】

【解析】

首先根據(jù)圓周角定理得出∠POQ=80°,進(jìn)而利用等腰三角形的性質(zhì)得出∠OPQ=OQP,再由外角的性質(zhì)得出∠A+APO=POM=10°+50°=60°,即可得出POM是等邊三角形,再由正六邊形的性質(zhì)得出答案.

連接QO,PO,

QO=PO,

∴∠OPQ=OQP,

∵∠PMQ=40°

∴∠POQ=80°,

∴∠OPQ+OQP=180°-80°=100°

∴∠OPQ=OQP=50°,

∴∠A+APO=POM=10°+50°=60°

PO=OM,

∴△POM是等邊三角形,

PM=OP=OM,

∴以PM為邊作圓的內(nèi)接正多邊形,則這個(gè)正多邊形是正六邊形.

故答案為:6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

現(xiàn)有甲、乙兩種機(jī)器加工零件,甲種機(jī)器比乙種機(jī)器每小時(shí)多加工30個(gè),甲種機(jī)器加工900個(gè)零件所用時(shí)間與乙種機(jī)器加工600個(gè)零件所用時(shí)間相等,求兩種機(jī)器每小時(shí)各加工多少個(gè)零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,ADBE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.

(1)如圖①,求證:AE=BD;

(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖②中四對(duì)全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在邊長(zhǎng)為2的正三角形ABC中,EF、G分別為AB

AC、BC的中點(diǎn),點(diǎn)P為線段EF上一個(gè)動(dòng)點(diǎn),連接BP、GP,則△BPG的周長(zhǎng)的最小值是

_ ▲

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)CADEF于點(diǎn)D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+4x+cy軸交于點(diǎn)A05),x軸交于點(diǎn)EB,點(diǎn)B坐標(biāo)為(50).

1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);

2)過(guò)點(diǎn)AAC平行于x交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)PAC上方)PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州漆器名揚(yáng)天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30/件,每天銷售量(件)與銷售單價(jià)(元)之間存在一次函數(shù)關(guān)系,如圖所示.

(1)求之間的函數(shù)關(guān)系式;

(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤(rùn)中捐出150元給希望工程,為了保證捐款后每天剩余利潤(rùn)不低于3600元,試確定該漆器筆筒銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線經(jīng)過(guò)點(diǎn),與雙曲線在第二象限內(nèi)交于點(diǎn),且的面積為

求直線的解析式及的值;

試探究:在軸上是否存在點(diǎn),使為直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案