【題目】在學(xué)校開展的獻愛心活動中,小東同學(xué)打算在暑假期間幫助一家社會福利書店推銷A、BCD四種書刊.為了了解四種書刊的銷售情況,小東對五月份這四種書刊的銷售量進行了統(tǒng)計,小東通過采集數(shù)據(jù),繪制了兩幅不完整的統(tǒng)計圖表(如圖),請你根據(jù)所給出的信息解答以下問題:

書刊種類

頻數(shù)

頻率

A

   

0.25

B

1000

0.20

C

750

0.15

D

2000

   

1)填充頻率分布表中的空格及補全頻數(shù)分布直方圖;

2)若該書店計劃定購此四種書刊6000冊,請你計算B種書刊應(yīng)采購多少冊較合適?

3)針對調(diào)查結(jié)果,請你幫助小東同學(xué)給該書店提一條合理化的建議.

【答案】(1)見解析;(2)B種書刊應(yīng)采購1200冊較合適;(3)在購書時應(yīng)該多購買D類書刊.

【解析】

1)由統(tǒng)計表和直方圖可知:D類書刊的頻率為1-0.25-0.20-0.15=0.40;A類書刊的頻數(shù)為1250;
2)計劃定購此四種書刊6000冊,則B種書刊應(yīng)采購6000×0.20=1200冊;
3)在購書時應(yīng)該多購買D類書刊(只要合理即可).

解:(1)完成表格和直方圖如下圖:

書刊種類

頻數(shù)

頻率

A

1250

0.25

B

1000

0.20

C

750

0.15

D

2000

0.4

26000×0.21200(冊);

答:B種書刊應(yīng)采購1200冊較合適;

3)在購書時應(yīng)該多購買D類書刊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某商場地下停車場有5個出入口,每天早晨7點開始對外停車且此時車位空置率為90%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,6小時車庫恰好停滿;如果開放3個進口和2個出口,3小時車庫恰好停滿.2019年清明節(jié)期間,由于商場人數(shù)增多,早晨7點時的車位空置率變?yōu)?/span>60%,因為車庫改造,只能開放1個進口和1個出口,則從早晨7點開始經(jīng)過______小時車庫恰好停滿.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD

1)求該拋物線的表達式;

2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標為t

①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;

②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=(k0x0)的圖象與等邊三角形OAB的邊OA,AB分別交于點MN,且OM=2MA,若AB=3,那么點N的橫坐標為(  )

A.B.C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關(guān)系是   ;

②直線DG與直線BE之間的位置關(guān)系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,上述結(jié)論是否成立,并說明理由.

3)應(yīng)用:在(2)的情況下,連接BGDE,若AE1,AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線ykxk0)相交于點A、B,以AB為底作等腰三角形,使∠ACB120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應(yīng)的函數(shù)解析式為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一根為另一根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于倍根方程的說法,不正確的是(

A.方程是倍根方程;

B.是倍根方程,則;

C.若方程是倍根方程,且相異兩點都在拋物線上,則方程的一個根為

D.若點在反比例函數(shù)的圖象上,則關(guān)于的方程是倍根方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點分別在軸上,且.將正方形繞原點順時針旋轉(zhuǎn),且,得到正方形,再將正方繞原點順時針旋轉(zhuǎn),且,得到正方形,以此規(guī)律,得到正方形,則點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于兩點(點在點左側(cè)),經(jīng)過點的直線軸交于點,與拋物線的另一個交點為,且

1)直接寫出點的坐標,并用含的式子表示直線的函數(shù)表達式(其中用含的式子表示).

2)點為直線下方拋物線上一點,當(dāng)的面積的最大值為時,求拋物線的函數(shù)表達式;

3)設(shè)點是拋物線對稱軸上的一點,點在拋物線上,以點、、為頂點的四邊形能否為矩形?若能,求出點的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案