【題目】如圖,圖正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.

1)在圖中畫出一個直角,并且其面積為5;

2)在圖中畫出一個等腰直角

3)連接,直接寫出的長.

【答案】1)見詳解;(2)見詳解;(3

【解析】

1)利用直角三角的定義結(jié)合勾股定理得出符合題意的答案;

2)直接利用等腰直角三角形的定義結(jié)合勾股定理得出答案;

3)連接BD,由勾股定理即可求出BD的長度.

解:(1)如圖所示:△ABC為所求;

由勾股定理,得:,,,

,

∴△ABC是直角三角形;

∴△ABC的面積為:;

2)如圖所示,△ACD為所求;

由(1)知,,

,,

,

∴△ACD是等腰直角三角形;

3)如圖:

由勾股定理,得

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,相切于點,直徑交于點,弦交于點,,,,則的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,圖②分別是網(wǎng)上某種型號拉桿箱的實物圖與示意圖,根據(jù)商品介紹,獲得了如下信息:滑桿、箱長、拉桿的長度都相等,即,點、在線段上,點上,支桿,,,

請根據(jù)以上信息,解決下列問題;

1)求的長度(結(jié)果保留根號);

2)求拉桿端點到水平滑桿的距離(結(jié)果保留到).

參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城有肥料,城有肥料.現(xiàn)要把這些肥料全部運往、兩鄉(xiāng),鄉(xiāng)需要肥料240t,鄉(xiāng)需要肥料,其運往、兩鄉(xiāng)的運費如下表:

兩城/兩鄉(xiāng)

C/(/)

D/(/)

20

24

15

17

設(shè)從城運往鄉(xiāng)的肥料為,從城運往兩鄉(xiāng)的總運費為元,從城運往兩鄉(xiāng)的總運費為

(1)分別寫出之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍);

(2)試比較、兩城總運費的大;

(3)城的總運費不得超過4800元,怎樣調(diào)運使兩城總費用的和最少?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為直徑,點D為弧ACB的中點,過點D的切線與BC的延長線交于點E

1)用尺規(guī)作圖作出圓心O;(保留作圖痕跡,不寫作法);

2)求證:DEBC;

3)若OC=2CE=4,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線交軸正半軸于點1,0)和點,交軸于點

1)如圖1,直線經(jīng)過點、點,求拋物線的解析式;

2)如圖2,點為該拋物線的頂點,過點軸的平行線交拋物線于另一點,該拋物線對稱軸右側(cè)的拋物線上有一點,當時,求點的縱坐標.

3)如圖3,在(1)(2)的結(jié)論下,拋物線對稱軸右側(cè)的拋物線上有一點,作軸于點,延長,當時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.

(1)求證:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如圖,一次函數(shù)與反比例函數(shù)的圖象交于點Am ,1)和B 1,).

1)填空:一次函數(shù)的解析式為   ,反比例函數(shù)的解析式為   ;

2)點Px軸正半軸上一點,連接AP,BP.當△ABP是直角三角形時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,已知,,,點的延長線上,點的延長線上,有下列結(jié)論:①;②;③;④若,則點的距離為.則其中正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案