【題目】已知:二次函數(shù)的圖象與x軸交于點(diǎn)A、,頂點(diǎn)為
求該二次函數(shù)的解析式;
如圖,過A、C兩點(diǎn)作直線,并將線段AC沿該直線向上平移,記點(diǎn)A、C分別平移到點(diǎn)D、E處若點(diǎn)F在這個(gè)二次函數(shù)的圖象上,且是以EF為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);
試確定實(shí)數(shù)p,q的值,使得當(dāng)時(shí),.
【答案】(1)該二次函數(shù)的解析式為;(2)點(diǎn)F的坐標(biāo)為;(3)滿足條件的實(shí)數(shù)p,q的值為,或,.
【解析】分析:(1)由二次函數(shù)y=ax2+bx+c的頂點(diǎn)為C(-1,-2),可設(shè)其解析式為y=a(x+1)2-2,再把B(-3,0)代入,利用待定系數(shù)法即可求出該二次函數(shù)的解析式;
(2)由二次函數(shù)的解析式求出A(1,0).過點(diǎn)C作CH⊥x軸于點(diǎn)H.解直角△ACH,得出AH=2=CH,那么∠1=45°,AC=2.解等腰直角△DEF得出∠2=45°,EF=4,由∠1=∠2=45°,得到EF∥CH∥y軸.利用待定系數(shù)法求出直線AC的解析式為y=x-1.設(shè)F(m,m2+m-)(其中m>1),則點(diǎn)E(m,m-1),那么EF=(m2+m-)-(m-1)=m2-=4,解方程求出m,進(jìn)而得出點(diǎn)F的坐標(biāo);
(3)先求出y=時(shí)x1=-4,x2=2.再根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)p≤x≤q時(shí),p≤y≤,應(yīng)分三種情況討論:①p≤x≤-1;②p<-1≤q;③-1≤p<q.
詳解:二次函數(shù)的頂點(diǎn)為,
可設(shè)該二次函數(shù)的解析式為,
把代入,得,
解得
該二次函數(shù)的解析式為;
由,得或1,
.
如圖,過點(diǎn)C作軸于點(diǎn)H.
,
,,
又,
,
,.
在等腰直角中,,,
,,
,
軸.
由,可得直線AC的解析式為.
由題意,設(shè)其中,則點(diǎn),
,
,不合題意舍去,
點(diǎn)F的坐標(biāo)為;
當(dāng)時(shí),,解得,.
,
當(dāng)時(shí),y隨x的增大而減。划(dāng)時(shí),y隨x的增大而增大;
當(dāng)時(shí),y有最小值.
當(dāng)時(shí),,
可分三種情況討論:
當(dāng)時(shí),由增減性得:
當(dāng)時(shí),,當(dāng)時(shí),,不合題意,舍去;
當(dāng)時(shí),
Ⅰ若,由增減性得:
當(dāng)時(shí),,當(dāng)時(shí),,不合題意,舍去;
Ⅱ若,由增減性得:
當(dāng)時(shí),,當(dāng)時(shí),,符合題意,
,;
當(dāng)時(shí),由增減性得:
當(dāng)時(shí),,當(dāng)時(shí),,
把,代入,得,
解得,不合題意,舍去,
,.
綜上所述,滿足條件的實(shí)數(shù)p,q的值為,或,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化,經(jīng)市場(chǎng)調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A,B兩種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在已有運(yùn)算的基礎(chǔ)上定義一種新運(yùn)算:,的運(yùn)算級(jí)別高于加減乘除運(yùn)算,即的運(yùn)算順序要優(yōu)先于運(yùn)算,試根據(jù)條件回答下列問題.
(1)計(jì)算: ;
(2)若,則 ;
(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;
(4)如圖所示,在數(shù)軸上,點(diǎn)分別以1個(gè)單位每秒的速度從表示數(shù)-1和3的點(diǎn)開始運(yùn)動(dòng),點(diǎn)向正方向運(yùn)動(dòng),點(diǎn)向負(fù)方向運(yùn)動(dòng),秒后點(diǎn)分別運(yùn)動(dòng)到表示數(shù)和的點(diǎn)所在的位置,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
(探究與發(fā)現(xiàn))
如圖1,在數(shù)軸上點(diǎn)表示的數(shù)是8,點(diǎn)表示的數(shù)是4,求線段的中點(diǎn)所示的數(shù)對(duì)于求中點(diǎn)表示數(shù)的問題,只要用點(diǎn)所表示的數(shù)-8,加上點(diǎn)所表示的數(shù)4,得到的結(jié)果再除以2,就可以得到中點(diǎn)所表示的數(shù):即點(diǎn)表示的數(shù)為:.
(理解與應(yīng)用)
把一條數(shù)軸在數(shù)處對(duì)折,使表示-20和2020兩數(shù)的點(diǎn)恰好互相重合,則 .
(拓展與延伸)
如圖2,已知數(shù)軸上有、、三點(diǎn),點(diǎn)表示的數(shù)是-6,點(diǎn)表示的數(shù)是8..
(1)若點(diǎn)以每秒3個(gè)單位的速度向右運(yùn)動(dòng),點(diǎn)同時(shí)以每秒1個(gè)單位的速度向左運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為秒.
①點(diǎn)運(yùn)動(dòng)秒后,它在數(shù)軸上表示的數(shù)表示為 (用含的代數(shù)式表示)
②當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),求的值.
(2)若(1)中點(diǎn)、點(diǎn)的運(yùn)動(dòng)速度、運(yùn)動(dòng)方向不變,點(diǎn)從原點(diǎn)以每秒2個(gè)單位的速度向右運(yùn)動(dòng),假設(shè)、、三點(diǎn)同時(shí)運(yùn)動(dòng),求多長時(shí)間點(diǎn)到點(diǎn)的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小瑩和小亮在筆直的公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行米,先到終點(diǎn)的人原地休息.已知小瑩先出發(fā)分鐘,在整個(gè)步行過程中,兩人的距離(米)與小瑩出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示,下列結(jié)論:①小瑩的步行速度為米/分;②小亮用分鐘追上小瑩;③小亮走完全程用了分鐘;④小亮到達(dá)終點(diǎn)時(shí),小瑩離終點(diǎn)還有米。其中正確的結(jié)論有( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有五張形狀、大小、質(zhì)地都相同的卡片,這些卡片上面分別畫有下列圖形:①正方形;②等邊三角形;③平行四邊形;④等腰三角形;⑤圓.將卡片背面朝上洗勻,從中隨機(jī)抽取一張,抽出的紙片正面圖形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲三角形的周長為,乙三角形的第一條邊長為,第二條邊長為,第三條邊比第二條邊短.
(1)求乙三角形第三條邊的長;
(2)甲三角形和乙三角形的周長哪個(gè)大?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩點(diǎn)E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com