【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),有下列結(jié)論:①BD=DC;②DE=DF;③AD上任意一點(diǎn)到AB,AC的距離相等;④AD上任意一點(diǎn)到B點(diǎn)與C點(diǎn)的距離不等.其中正確的是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
【答案】C
【解析】
根據(jù)等腰三角形“三線合一”性質(zhì)可知:AD是BC的垂直平分線,AD是∠BAC的平分線,根據(jù)垂直平分線性質(zhì)和角平分線性質(zhì)可得到答案.
因?yàn),在?/span>ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),
所以,根據(jù)等腰三角形“三線合一”性質(zhì)可知:AD是BC的垂直平分線,AD是∠BAC的平分線,
所以,①BD=DC;②DE=DF;③AD上任意一點(diǎn)到AB,AC的距離相等;④AD上任意一點(diǎn)到B點(diǎn)與C點(diǎn)的距離相等.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點(diǎn)E在BC的延長(zhǎng)線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,下列結(jié)論中不正確的是( )
A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2﹣10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=﹣2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O(shè)(0,0)、A(2,0)為頂點(diǎn)作正△OAP1 , 以點(diǎn)P1和線段P1A的中點(diǎn)B為頂點(diǎn)作正△P1BP2 , 再以點(diǎn)P2和線段P2B的中點(diǎn)C為頂點(diǎn)作△P2CP3 , …,如此繼續(xù)下去,則第六個(gè)正三角形中,不在第五個(gè)正三角形上的頂點(diǎn)P6的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購(gòu)買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20元/個(gè).甲文具店的銷售方案是:購(gòu)買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購(gòu)買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購(gòu)買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.
(1)若設(shè)莉莉要購(gòu)買x(x>5)個(gè)該款筆記本,請(qǐng)用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購(gòu)買全部該款筆記本所需的費(fèi)用;
(2)在(1)的條件下,莉莉購(gòu)買多少個(gè)筆記本時(shí),到乙文具店購(gòu)買全部筆記本所需的費(fèi)用與到甲文具店購(gòu)買全部筆記本所需的費(fèi)用相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面給出的數(shù)軸中,點(diǎn) A 表示 1,點(diǎn) B 表示-2,回答下面的問題:
(1)A、B 之間的距離是 ;
(2)觀察數(shù)軸,與點(diǎn) A 的距離為 5 的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使點(diǎn) A 與-3 表示的點(diǎn)重合,則點(diǎn) B 與數(shù) 表示的點(diǎn)重合;
(4)若數(shù)軸上 M、N 兩點(diǎn)之間的距離為 2018(M 在 N 的左側(cè)),且 M、N 兩點(diǎn)經(jīng)過(3)中折 疊 后 互 相 重 合 , 則 M 、 N 兩 點(diǎn) 表 示 的 數(shù) 分 別 是 : M : ;N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條射線AM∥BN,線段CD的兩個(gè)端點(diǎn)C、D分別在射線BN、AM上,且∠A=∠BCD=108°.E是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),且BD平分∠EBC.
(1)求∠ABC的度數(shù).
(2)請(qǐng)?jiān)趫D中找出與∠ABC相等的角,并說明理由.
(3)若平行移動(dòng)CD,且AD>CD,則∠ADB與∠AEB的度數(shù)之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.
(1)求(﹣3)5的值;
(2)若(﹣2)x=6,求x的值;
(3)若3(2x)=﹣4+x,求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com