【題目】關(guān)于x的方程mx2﹣2x+1=0有實數(shù)解,則m需滿足

【答案】m≤1
【解析】解:∵方程mx2﹣2x+1=0有實數(shù)解,∴△=(﹣2)2﹣4m=4﹣4m≥0,
解得:m≤1.
所以答案是:m≤1.
【考點精析】根據(jù)題目的已知條件,利用求根公式的相關(guān)知識可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖,回答下列問題:

(1)本次調(diào)查學(xué)生共 人,a= ,并將條形圖補充完整;

(2)如果該校有學(xué)生2000人,請你估計該校選擇“跑步”這種活動的學(xué)生約有多少人?

(3)學(xué)校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;

(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,E是BC中點,P為BD上一動點,則PE+PC的最小值為( )

A.
B.2
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知兩點的坐標分別為,是線段上一點(與點不重合),拋物線)經(jīng)過點,,頂點為,拋物線)經(jīng)過點,頂點為,,的延長線相交于點

(1)若,,求拋物線,的解析式;

(2)若,求的值;

(3)是否存在這樣的實數(shù)),無論取何值,直線都不可能互相垂直?若存在,請直接寫出的兩個不同的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果代數(shù)式2x2+3x+7的值為8,那么代數(shù)式4x2+6x﹣9的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:

銷售方式

批發(fā)

零售

儲藏后銷售

售價(元/噸)

3000

4500

5500

成本(元/噸)

700

1000

1200

若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù))與反比例函數(shù))的圖象交于點,

(1)求這兩個函數(shù)的表達式;

(2)在軸上是否存在點,使為等腰三角形?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:的直徑,點上,的切線,于點延長線上的一點,于點,連接

(1)求證:平分

(2)若,

的度數(shù).

的半徑為,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案