【題目】幻方的歷史很悠久,傳統(tǒng)幻方最早出現(xiàn)在夏禹時代的洛書,洛書用今天的數(shù)學符號翻譯出來,就是一個三階幻方,如圖1所示,圖中每個位置上的點數(shù)就表示數(shù)幾,如中間5個點就表示5,每橫行、每豎列以及兩條對角線上的數(shù)的和都相等.

1)把﹣4,﹣3,﹣2,﹣1,01,2,34填入如圖2的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的和都相等;

2)若把3x83x6,3x43x2,3x3x+2,3x+4,3x+6,3x+8填入如圖3的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的和都相等,則每行的和是   (用含x的式子表示);

3)根據(jù)上述填數(shù)經(jīng)驗請把﹣2,﹣22,﹣23,﹣24,﹣25,﹣26,﹣27,﹣28,﹣29填入如圖4的方格中,使每橫行、每豎列以及兩條對角線上的數(shù)的積都相等.

【答案】1)見解析;(2)見解析,9x;(3)見解析.

【解析】

1)根據(jù)數(shù)據(jù)特點,將0放中間,互為相反數(shù)的兩個數(shù)放在0的兩側(cè)即可;

2)根據(jù)式子特點,將3x放中間,常數(shù)項能夠抵消的兩個式子放在3x的兩側(cè),再算出每行的和;

3)由于,可將﹣25放中間,乘積為210的兩個數(shù)放兩側(cè).

解:(1)如下圖2所示,

2)如下圖3所示,

∴每行的和為:3x2+3x+8+3x69x,

故答案為:9x

3)如下圖4所示,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(100),(04),點DOA的中點,點PBC上運動,當ODP是腰長為5的等腰三角形時,點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國是水資源比較貧乏的國家之一,為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段來達到節(jié)約用水的目的,規(guī)定如下用水收費標準:每戶每月的用水不超過20立方米(20立方米)時,水費按基本價收費:超過20立方米時,不超過的部分仍按基本價收費,超過部分按調(diào)節(jié)價收費.某戶居民今年4、5月份的用水量和水費如下表所示:

月份

用水量(立方米)

水費()

4

20

42

5

24

56.40

(1)請你算一算該市水費的調(diào)節(jié)價每立方米多少元?

(2)若該戶居民6月份用水量為30立方米,請算一算,6月份水費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標;若不存在,請說明理由.

B:①求線段DE的長;

②在坐標平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從倉庫O出發(fā)在東西街道上運送水果,規(guī)定向東為正方向,一次到達的5個銷售地點分別為A,B,C,D,E,最后回到倉庫O,貨車行駛的記錄(單位:千米)如下:+2,+3,﹣6,﹣1,﹣2+4.請問:

1)請以倉庫O為原點,向東為正方向,選擇適當?shù)膯挝婚L度,畫出數(shù)軸,并標出A,BC,DE的位置;

2)試求出該貨車共行駛了多少千米?

3)如果貨車運送的水果以100千克為標準重量,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負數(shù),則運往A,B,C,D,E五個地點的水果重量可記為:+50,﹣15,+25,﹣10,﹣20,則該貨車運送的水果總重量是多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗,某食品廠為了解市民對去年銷售量較好的肉餡粽、豆沙粽、紅棗粽、蛋黃餡粽(以下分別用A,B,C,D表示這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?將不完整的條形圖和扇形圖補充完整;

(2)若居民區(qū)有8000人,請估計愛吃C D粽的總?cè)藬?shù);

(3)若有外型完全相同的A,B,C,D粽各一個煮熟后,小王吃了兩個,用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司經(jīng)營楊梅業(yè)務,以3萬元/噸的價格買入楊梅后,分揀成A、B兩類,A類楊梅包裝后直接銷售,包裝成本為1萬元/噸,它的平均銷售價格y(單位:萬元/噸)與銷售數(shù)量x≥2,單位:噸)之間的函數(shù)關系如圖所示;B類楊梅深加工后再銷售,深加工總費用s(單位:萬元)與加工數(shù)量t(單位:噸)之間的函數(shù)關系是,平均銷售價格為9萬元/噸.

(1)A類楊梅的銷售量為5噸時,它的平均銷售價格是每噸多少萬元?

(2)若該公司收購10噸楊梅,其中A類楊梅有4噸,則經(jīng)營這批楊梅所獲得的毛利潤(w)為多少萬元?(毛利潤=銷售總收入-經(jīng)營總成本)

(3)若該公司收購20噸楊梅,其中A類楊梅有x噸,經(jīng)營這批楊梅所獲得的毛利潤為w萬元.

①求w關于x的函數(shù)關系式;

②若該公司獲得了30萬元毛利潤,問:用于直銷的A類楊梅有多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知直線x、y軸交于B、C兩點,A(0,0),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1△AA1B1,第2△B1A2B2,第3△B2A3B3,…則第n個等邊三角形的邊長等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級學生在一節(jié)體育課中,選一組學生進行投籃比賽,每人投10次,匯總投進球數(shù)的情況進行統(tǒng)計分析,繪制了如下不完整的統(tǒng)計表和統(tǒng)計圖.

次數(shù)

10

8

6

5

人數(shù)

3

a

2

1

(1)表中a=   

(2)請將條形統(tǒng)計圖補充完整;

(3)從小組成員中選一名學生參加校動會投籃比賽,投進10球的成員被選中的概率為多少?

查看答案和解析>>

同步練習冊答案