【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O 于點(diǎn)E.
(1) 求證:AC平分∠DAB;
(2) 連接CE,若CE=6,AC=8,求AE的長(zhǎng).
【答案】(1)證明見解析;(2)2.8.
【解析】試題分析:(1)連接OC,利用條件可證得AD∥OC,再根據(jù)平行線的性質(zhì)和角之間的關(guān)系可得∠DAC=∠CAO,即可得證;
(2)連接BC、OE,根據(jù)圓周角定理和勾股定理可求AB的長(zhǎng),然后根據(jù)相似三角形的判定和性質(zhì)可得到AD=4.8,DE=3.6,由此可解.
試題解析:(1)證明:連接OC,則OC⊥CD,又AD⊥CD,∴∠ADC=∠OCD=90°,
∴AD∥OC,∴∠CAD=∠OCA,
又OA=OC,∴∠OCA=∠OAC,
∴∠CAD=∠CAO,∴AC平分∠DAB.
(2)解:連接BC、OE,
∵∠EOA=2∠CAD,∠COB=2∠CAO
∵∠CAD=∠CAO,∴∠EOA=∠COB
∴BC=EC=6
∵AB是⊙O的直徑,∴∠ACB=90°,
又AC=8,勾股定理易得AB=10,
∵∠DAC=∠CAB,∠ADC=∠ACB=90°,
∴△ADC∽△ACB,∴,
∴AD==6.4,
又∠DEC=∠ABC,同理可得DE=3.6,
∴AE=AD-DE=6.4-3.6=2.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB=,AB=1,把△ABO繞點(diǎn)O旋轉(zhuǎn)150°后得到△A1B1O,則點(diǎn)A1的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過點(diǎn)O的直線與BA、DC的延長(zhǎng)線分別交于點(diǎn)E、F.
(1)求證:△AOE≌△COF;
(2)請(qǐng)連接EC、AF,則EF與AC滿足什么條件時(shí),四邊形AECF是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對(duì)花木的需求量逐年提高.某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤(rùn)與投資量成正比例關(guān)系,如圖(1)所示;種植花卉的利潤(rùn)與投資量成二次函數(shù)關(guān)系,如圖(2)所示(注:利潤(rùn)與投資量的單位:萬元)
(1)分別求出利潤(rùn)與關(guān)于投資量的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這5個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,點(diǎn)D是BC邊的中點(diǎn),點(diǎn)P為AB 邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP= ,PD= ,若與之間的函數(shù)關(guān)系的圖象如圖2所示,則等邊△ABC的面積為( )
A. 4 B. C. 12 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com