【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,則下列五個(gè)結(jié)論:①AD上任意一點(diǎn)到AB,AC兩邊的距離相等;②AD上任意一點(diǎn)到B,C兩點(diǎn)的距離相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正確的有(

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】D
【解析】解:∵AB=AC
∴△ABC是等腰三角形,∠B=∠C
∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F
∴AD⊥BC,BD=CD,DE=DF,故③正確;
∴②正確;
∴AD是BC的中垂線
∴①正確;
∵DE⊥AB于E,DF⊥AC
∴∠=∠DFC=90°
∵∠=∠DFC=90°,BD=CD,∠B=∠C
∴△BED≌△CFD
∴∠BDE=∠CDF,即④正確;
∵∠AED=∠AFD=90°,AD=AD,∠EAD=∠FAD
∴△AED≌△AFD
∴AE=AF,故⑤正確.
故選D.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解等腰三角形的性質(zhì)(等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2,3,5,m,n五個(gè)數(shù)據(jù)的方差是2,那么3,4,6,m+1,n+1五個(gè)數(shù)據(jù)的方差是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列分解因式正確的是

Aaa3=a(1a2)B2a4b2=2(a2b)

Ca24=(a2)2 Da22a1=(a1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,AOB=60°,則對(duì)角線AC與邊BC所成的角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“順次聯(lián)結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn),所得四邊形是矩形”,這是 事件(填“必然”、“不可能”或“隨機(jī)”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB=,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線,垂足分別是點(diǎn)A1、B1,連接A1B1,再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 ___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC與DEF都是等腰直角三角形,ACB=EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明BOF≌△COD,則BF=CD

解決問(wèn)題

1將圖中的RtDEF繞點(diǎn)O旋轉(zhuǎn)得到圖,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;

2如圖,若ABC與DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述1中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;

3如圖,若ABC與DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角ACB=EDF=α,請(qǐng)直接寫(xiě)出的值用含α的式子表示出來(lái)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系;

(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;

(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案