【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;
(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
【答案】
(1)∠A+∠C=90°
(2)解:如圖2,過點(diǎn)B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C
(3)解:如圖3,過點(diǎn)B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
設(shè)∠DBE=α,∠ABF=β,則
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②聯(lián)立方程組,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°
【解析】解:(1)如圖1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案為:∠A+∠C=90°;
(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)先過點(diǎn)B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先過點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進(jìn)而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,則下列五個(gè)結(jié)論:①AD上任意一點(diǎn)到AB,AC兩邊的距離相等;②AD上任意一點(diǎn)到B,C兩點(diǎn)的距離相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正確的有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一根木棒放在數(shù)軸上,木棒的左端與數(shù)軸上的點(diǎn)A重合,右端與點(diǎn)B重合.
(1)若將木棒沿?cái)?shù)軸向右水平移動(dòng),則當(dāng)它的左端移動(dòng)到B點(diǎn)時(shí),它的右端在數(shù)軸上所對(duì)應(yīng)的數(shù)為20;若將木棒沿?cái)?shù)軸向左水平移動(dòng),則當(dāng)它的右端移動(dòng)到A點(diǎn)時(shí),則它的左端在數(shù)軸上所對(duì)應(yīng)的數(shù)為5(單位:cm),由此可得到木棒長(zhǎng)為cm.
(2)由題(1)的啟發(fā),請(qǐng)你能借助“數(shù)軸”這個(gè)工具幫助小紅解決下列問題:
問題:一天,小紅去問曾當(dāng)過數(shù)學(xué)老師現(xiàn)在退休在家的爺爺?shù)哪挲g,爺爺說:“我若是你現(xiàn)在這么大,你還要40年才出生;你若是我現(xiàn)在這么大,我已經(jīng)125歲,是老壽星了,哈哈!”,請(qǐng)求出爺爺現(xiàn)在多少歲了?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過B,C向過點(diǎn)A的直線作垂線,垂足分別為點(diǎn)E,F(xiàn).
(1)如圖(1),過A的直線與斜邊BC不相交時(shí),求證:①△ABE≌△CAF; ②EF=BE+CF
(2)如圖(2),過A的直線與斜邊BC相交時(shí),其他條件不變,若BE=10,CF=3,試求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,①②③④⑤五個(gè)平行四邊形拼成一個(gè)含30度內(nèi)角的菱形EFGH(不重疊無縫隙).若①②③④四個(gè)平行四邊形面積的和為26cm2 , 四邊形ABCD面積是19cm2 , 則①②③④四個(gè)平行四邊形周長(zhǎng)的總和為( )
A.96cm
B.64cm
C.48cm
D.36cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的“等積線”,等積線被這個(gè)平面圖形截得的線段叫做該圖形的“等積線段”(例如三角形的中線就是三角形的等積線段).已知菱形的邊長(zhǎng)為4,且有一個(gè)內(nèi)角為60°,設(shè)它的等積線段長(zhǎng)為m,則m的取值范圍是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列識(shí)別圖形不正確的是( )
A.有一個(gè)角是直角的平行四邊形是矩形
B.有三個(gè)角是直角的四邊形是矩形
C.對(duì)角線相等的四邊形是矩形
D.對(duì)角線互相平分且相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一元一次方程解下列應(yīng)用題
據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù)顯示,在我國(guó)的664個(gè)城市中,按水資源可分為暫不缺水城市、一般缺水城市和嚴(yán)重缺水城市三類.其中,暫不缺水城市比嚴(yán)重缺水城市的4倍少50個(gè),一般缺水城市是嚴(yán)重缺水城市的2倍.
(1)求嚴(yán)重缺水城市有多少個(gè)?
(2)為了解決缺水的問題,國(guó)家啟動(dòng)了多個(gè)水利工程,緩解了部分嚴(yán)重缺水城市的情況,使一般性缺水城市的數(shù)目是嚴(yán)重缺水城市的9倍,求現(xiàn)在一般性缺水的城市有多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com