【題目】如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點O旋轉得到圖②,猜想此時線段BF與CD的數量關系,并證明你的結論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數量關系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)
【答案】(1) BF=CD.證明見解析;(2)(1)中的結論不成立.理由見解析;(3)=tan.
【解析】
試題分析:(1)如答圖②所示,連接OC、OD,證明△BOF≌△COD;
(2)如答圖③所示,連接OC、OD,證明△BOF∽△COD,相似比為;
(3)如答圖④所示,連接OC、OD,證明△BOF∽△COD,相似比為tan.
試題解析:(1)猜想:BF=CD.理由如下:
如答圖②所示,連接OC、OD.
∵△ABC為等腰直角三角形,點O為斜邊AB的中點,
∴OB=OC,∠BOC=90°.
∵△DEF為等腰直角三角形,點O為斜邊EF的中點,
∴OF=OD,∠DOF=90°.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
∵在△BOF與△COD中,
∴△BOF≌△COD(SAS),
∴BF=CD.
(2)答:(1)中的結論不成立.
如答圖③所示,連接OC、OD.
∵△ABC為等邊三角形,點O為邊AB的中點,
∴=tan30°=,∠BOC=90°.
∵△DEF為等邊三角形,點O為邊EF的中點,
∴=tan30°=,∠DOF=90°.
∴.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵,∠BOF=∠COD,
∴△BOF∽△COD,
∴
(3)如答圖④所示,連接OC、OD.
∵△ABC為等腰三角形,點O為底邊AB的中點,
∴=tan,∠BOC=90°.
∵△DEF為等腰三角形,點O為底邊EF的中點,
∴=tan,∠DOF=90°.
∴==tan
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵==tan,∠BOF=∠COD,
∴△BOF∽△COD,
∴=tan.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D是BC的中點,DE⊥AB于E,DF⊥AC于F,則圖中共有全等三角形( )
A.5對
B.4對
C.3對
D.2對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,則下列五個結論:①AD上任意一點到AB,AC兩邊的距離相等;②AD上任意一點到B,C兩點的距離相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正確的有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實踐與探索:將連續(xù)的奇數1,3,5,7…排列成如圖的數表用十字框框出5個數(如圖)
(1)若將十字框上下左右平移,但一定要框住數列中的5個數,若設中間的數為a,用a的代數式表示十字框框住的5個數字之和;
(2)十字框框住的5個數之和能等于2015嗎?若能,分別寫出十字框框住的5個數;若不能,請說明理由;
(3)十字框框住的5個數之和能等于365嗎?若能,分別寫出十字框框住的5個數;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖一根木棒放在數軸上,木棒的左端與數軸上的點A重合,右端與點B重合.
(1)若將木棒沿數軸向右水平移動,則當它的左端移動到B點時,它的右端在數軸上所對應的數為20;若將木棒沿數軸向左水平移動,則當它的右端移動到A點時,則它的左端在數軸上所對應的數為5(單位:cm),由此可得到木棒長為cm.
(2)由題(1)的啟發(fā),請你能借助“數軸”這個工具幫助小紅解決下列問題:
問題:一天,小紅去問曾當過數學老師現在退休在家的爺爺的年齡,爺爺說:“我若是你現在這么大,你還要40年才出生;你若是我現在這么大,我已經125歲,是老壽星了,哈哈!”,請求出爺爺現在多少歲了?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列識別圖形不正確的是( )
A.有一個角是直角的平行四邊形是矩形
B.有三個角是直角的四邊形是矩形
C.對角線相等的四邊形是矩形
D.對角線互相平分且相等的四邊形是矩形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com