【題目】右圖中的正五角星有條對稱軸,圖中與∠A的2倍互補(bǔ)的角有個(gè)。
【答案】5;10
【解析】解:正五角星經(jīng)過角的頂點(diǎn)和中心點(diǎn)的直線都是它的對稱軸,所以有5條對稱軸.
∵∠A的2倍是∠AIE,
∴與該角互為補(bǔ)角的角有∠AIC和∠DIE共兩個(gè),
同理可得出其他八個(gè)符合條件的角.
故答案為:5,10
根據(jù)軸對稱圖形的定義,將一個(gè)圖形沿某條直線對折,直線兩旁的部分能互相重合的圖形就是軸對稱圖形,這條直線就是對稱軸,從而得出正五角星經(jīng)過角的頂點(diǎn)和中心點(diǎn)的直線都是它的對稱軸,所以有5條對稱軸;根據(jù)五角星的每個(gè)角都相等及三角形外角的定義得出∠A的2倍是∠AIE,根據(jù)鄰補(bǔ)角的定義得出與該角互為補(bǔ)角的角有∠AIC和∠DIE共兩個(gè),根據(jù)等量代換得出其他八個(gè)符合條件的角,從而得出答案。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶店專銷某種品牌的運(yùn)動(dòng)服,每套進(jìn)價(jià)70元,售價(jià)120元/套.為了促銷,淘寶店決定凡是一次購買數(shù)量不超過10套的,按原價(jià)每套120元購買;10套以上的,每多買1套,每套降價(jià)1元,每多買2套,每套降價(jià)2元…^(例如,某人一次性購買15套運(yùn)動(dòng)服,多出5套,按每套降價(jià)5元購買,共需(15×115)元;但是最低價(jià)90元/套.
(1)求顧客一次至少買多少套,才能以最低價(jià)購買?,
(2)寫出當(dāng)一次購買(>10)件時(shí),利潤(元)與購買量(件)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了35套運(yùn)動(dòng)服,另一位顧客買了40套運(yùn)動(dòng)服,淘寶店發(fā)現(xiàn)賣了40套反而比賣35套賺的錢少!為了使每次賣的數(shù)量多賺的錢也多,在其它促銷條件不變的情況下,最低價(jià)為90元/套至少要提高到多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)是(﹣2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.
(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長;
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,15個(gè)形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點(diǎn)稱為格點(diǎn). 已知菱形的一個(gè)角為60°,A、B、C都在格點(diǎn)上,點(diǎn)D在過A、B、C三點(diǎn)的圓弧上,若E也在格點(diǎn)上,且∠AED=∠ACD,則cos∠AEC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(或方程組)解應(yīng)用題:
(1)某服裝店到廠家選購甲、乙兩種服裝,若購進(jìn)甲種服裝9件、乙種服裝10件,需1810元;購進(jìn)甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價(jià)格相差多少元?
(2)某工廠現(xiàn)庫存某種原料1200噸,用來生產(chǎn)A、B兩種產(chǎn)品,每生產(chǎn)1噸A產(chǎn)品需這種原料2噸、生產(chǎn)費(fèi)用1000元;每生產(chǎn)1噸B產(chǎn)品需這種原料2.5噸、生產(chǎn)費(fèi)用900元,如果用來生產(chǎn)這兩種產(chǎn)品的資金為53萬元,那么A、B兩種產(chǎn)品各生產(chǎn)多少噸才能使庫存原料和資金恰好用完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)y=(x﹣2)2+2的圖象向左平移2個(gè)單位,所得圖象對應(yīng)的函數(shù)解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式a,b,c;
(2)線段AB上有一動(dòng)點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點(diǎn)M坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com