【題目】已知關于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根x1和x2,且x12﹣2x1+2x2=x1x2,則k的值是_____.
【答案】-2或
【解析】
先由x12-2x1+2x2=x1x2,得出x1-2=0或x1-x2=0,再分兩種情況進行討論:①如果x1-2=0,將x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,解方程求出k=-2;②如果x1-x2=0,那么△=0,解方程即可求解.
∵x12-2x1+2x2=x1x2,
x12-2x1+2x2-x1x2=0,
x1(x1-2)-x2(x1-2)=0,
(x1-2)(x1-x2)=0,
∴x1-2=0或x1-x2=0.
①如果x1-2=0,那么x1=2,
將x=2代入x2+(2k+1)x+k2-2=0,
得4+2(2k+1)+k2-2=0,
整理,得k2+4k+4=0,
解得k=-2;
②如果x1-x2=0,
則△=(2k+1)2-4(k2-2)=0.
解得: ,
∴k的值為-2或.
故答案為:-2或.
科目:初中數(shù)學 來源: 題型:
【題目】在和中,,,,點,,分別是,,的中點,連接,.
(1)如圖①,,點在上,則 ;
(2)如圖②,,點不在上,判斷的度數(shù),并證明你的結論;
(3)連接,若,,固定,將繞點旋轉(zhuǎn),當的長最大時,的長為 (用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當AB=8,CE=2時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)拋物線過點和,對稱軸為直線.
(1)求二次函數(shù)的表達式和頂點的坐標.
(2)將拋物線在坐標平面內(nèi)平移,使其過原點,若在平移后,第二象限的拋物線上存在點,使為等腰直角三角形,請求出拋物線平移后的表達式,并指出其中一種情況的平移方式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則:
(1)①∠ACE的度數(shù)是 ; ②線段AC,CD,CE之間的數(shù)量關系是 .
(2)如圖②,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CD,CE之間的數(shù)量關系,并說明理由;
(3)如圖②,AC與DE交于點F,在(2)條件下,若AC=8,求AF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,點F是AE的中點,連接DF,CF.
(1)如圖1,點D,E分別在AB,BC邊上,填空:CF與DF的數(shù)量關系是 ,位置關系是 ;
(2)如圖2,將圖1中的△BDE繞B順時針旋轉(zhuǎn)45°得到圖2,請判斷(1)中CF與DF的數(shù)量關系和位置關系是否仍然成立,如果成立,請加以證明;如果不成立,請說明理由;
(3)如圖3,將圖1中的△BDE繞B順時針旋轉(zhuǎn)90°得到圖3,如果BD=2,AC=3,請直接寫出CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔一項筑路任務,甲隊單獨施工完成此項任務比乙隊單獨施工完成此項任務多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關注,為此媒體記者隨機調(diào)查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com