【題目】(10分)如圖,△ABC中,以AC為直徑的⊙O與邊AB交于點D,點E為⊙O上一點,連接CE并延長交AB于點F,連接ED.
(1)若∠B+∠FED=90°,求證:BC是⊙O的切線;
(2)若FC=6,DE=3,F(xiàn)D=2,求⊙O的直徑.
【答案】(1)詳見解析;(2)⊙O的直徑為9.
【解析】
試題分析: (1)由圓內(nèi)接四邊形對角互補可得∠A+∠DEC=180°,由鄰補角的定義可得∠FED+∠DEC=180°,所以∠FED=∠A,又因∠B+∠FED=90°,即可得∠B+∠A=90°,所以∠BCA=90°,即BC是⊙O的切線;(2)由∠CFA=∠DFE,∠FED=∠A,即可得△FED∽△FAC,根據(jù)相似三角形的性質(zhì)可得,帶入數(shù)值即可求出AC的長.
試題解析:(1)證明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,
∴∠FED=∠A,
∵∠B+∠FED=90°,
∴∠B+∠A=90°,
∴∠BCA=90°,
∴BC是⊙O的切線;
(2)解:∵∠CFA=∠DFE,∠FED=∠A,
∴△FED∽△FAC,
∴,
∴,
解得:AC=9,即⊙O的直徑為9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、E分別在△ABC的邊AC、BC上,線段BD與AE交于點F,且CDCA=CECB.
(1)求證:∠CAE=∠CBD;
(2)若,求證:ABAD=AFAE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論:(1)∠DCF=∠BCD;(2)EF=CF;(3)S△BEC= 2S△CEF;(4)∠DFE=3∠AEF;其中正確的結論是( )
A.(1)(2)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,有格點三角形.
(1)寫出三個頂點的坐標.
(2)將三角形沿方向平移,當點的對應點在軸上時,畫出平移后的三角形.
(3)在給出圖形中找一格點(點除外),使三角形與面積相等,并把滿足條件的格點用線連起來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某織布廠有150名工人,為了提高經(jīng)濟效益,增設制衣項目,已知每人每天能織布30m,或利用所織布制衣4件,制衣一件需要布1.5m,將布直接出售,每米布可獲利2元,將布制成衣后出售,每件可獲利25元,若每名工人每天只能做一項工作,且不計其他因素,設安排x名工人制衣.
(1)一天中制衣所獲利潤P是多少(用含x的式子表示);
(2)一天中剩余布所獲利潤Q是多少 (用含x的式子表示);.
(3)一天當中安排多少名工人制衣時,所獲利潤為11806元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:
設a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個完全平方式.
(3)若a是216的立方根,b是16的平方根,試計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點分別在的邊上運動(不與點重合),是的平分線,的延長線交角的平分線于點.
(1)若,求的度數(shù).
(2)若,求的度數(shù).
(3)若,請用含的代數(shù)式表示的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校準備組織七年級400名學生參加北京夏令營,已知用3輛小客車和1輛大客車每次可運送學生105人;用1輛小客車和2輛大客車每次可運送學生110人;
(1)每輛小客車和每輛大客車各能坐多少名學生?
(2)若學校計劃租用小客車x輛,大客車y輛,一次送完,且恰好每輛車都坐滿;
①請你設計出所有的租車方案;
②若小客車每輛需租金4000元,大客車每輛需租金7600元,請選出最省錢的租車方案,并求出最少租金.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com