【題目】如圖,為線段上一動(dòng)點(diǎn)(不與點(diǎn)、重合),在同側(cè)分別作等邊和等邊,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),連接、,以下五個(gè)結(jié)論:①;②;③;④;⑤平分.一定成立的結(jié)論有______________;
【答案】①②③⑤.
【解析】
①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;
③根據(jù)②△CQB≌△CPA(ASA),可知③正確;
④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;
⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°可得出∠AOE=120°,再利用三角形相似以及等邊三角形的知識(shí)可知⑤正確;
解:∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD與△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正確;
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE
∴②正確;
∵△CQB≌△CPA,
∴AP=BQ
∴③正確;
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④錯(cuò)誤;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,
∴∠AOE=120°,
∵∠PBO=∠PAC,∠BOP=∠PCA,
∴△BPO∽△APC,
∴ ,
∴,
∵∠APB=∠CPO,
∴△APB∽△CPO,
∴∠COP=∠ABP=60°,
∴∠COA=∠COE=60°,
∴OC平分∠AOE,故⑤正確;
故答案為:①②③⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人為了測(cè)量小山頂上的塔ED的高,他在山下的點(diǎn)A處測(cè)得塔尖點(diǎn)D的仰角為45°,再沿AC方向前進(jìn)60 m到達(dá)山腳點(diǎn)B,測(cè)得塔尖點(diǎn)D的仰角為60°,塔底點(diǎn)E的仰角為30°,求塔ED的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
定義:有三個(gè)內(nèi)角相等的四邊形叫“和諧四邊形”.
(1)在“和諧四邊形”中,若,則 ;
(2)如圖,折疊平行四邊形紙片,使頂點(diǎn),分別落在邊,上的點(diǎn),處,折痕分別為,.
求證:四邊形是“和諧四邊形”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=90°,射線OM平分∠AOC,ON平分∠BOC.
(1)如果∠BOC=30°,求∠MON的度數(shù);
(2)如果∠AOB=α,∠BOC=30°,其他條件不變,求∠MON的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的,稱為第次操作,折痕到的距離記為;還原紙片后,再將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕到的距離記為;按上述方法不斷操作下去…,經(jīng)過(guò)第次操作后得到的折痕,到的距離記為,若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,滑動(dòng)調(diào)節(jié)式遮陽(yáng)傘的立柱垂直于地面,為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為,為中點(diǎn),,,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)與重合(圖2).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽(yáng)光線與垂直時(shí),遮陽(yáng)效果最佳.
(1)上午10:00時(shí),太陽(yáng)光線與地面的夾角為(圖3),為使遮陽(yáng)效果最佳,點(diǎn)需從上調(diào)多少距離?(結(jié)果精確到)
(2)中午12:00時(shí),太陽(yáng)光線與地面垂直(圖4),為使遮陽(yáng)效果最佳,點(diǎn)在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到)
(參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),是多項(xiàng)式的一次項(xiàng)系數(shù),是絕對(duì)值最小的整數(shù),單項(xiàng)式的次數(shù)為.
(1)= ,= ,= ;
(2)若將數(shù)軸在點(diǎn)處折疊,則點(diǎn)與點(diǎn) 重合( 填“能”或“不能”);
(3)點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí),點(diǎn) 和點(diǎn)分別以每秒3個(gè)單位長(zhǎng)度和2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),秒鐘過(guò)后,若點(diǎn)與點(diǎn)B之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,則= , = (用含的代數(shù)式表示);
(4)請(qǐng)問(wèn):AB+BC的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線AB與直線CD相交于點(diǎn)O,OE平分.
(1)如圖①,若,求的度數(shù);
(2)如圖②,射線OF在內(nèi)部.
①若,判斷OF是否為的平分線,并說(shuō)明理由;
②若OF平分,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com