精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線ABCD相交于一點O,OE平分∠BOD,OFOE于點O,∠AOC62°,則∠COF的度數為_____

【答案】59°

【解析】

先利用對頂角的性質得到∠BOD=∠AOC62°,再根據角平分線定義得到∠BOEBOD31°,接著利用垂直定義得到∠EOF90°,則利用互余得到∠BOF59°,利用互補得到∠BOC118°,然后計算∠BOC﹣∠BOF即可.

解:∵直線ABCD相交于一點O,

∴∠BOD=∠AOC62°

OE平分∠BOD,

∴∠BOEBOD31°,

OFOE

∴∠EOF90°,

∴∠BOF90°31°59°,

∵∠BOC180°﹣∠AOC118°,

∴∠COF118°59°59°

故答案是:59°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,∠1=∠2,∠ADEEDB,則∠DEB_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某經銷商銷售一種產品,這種產品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18元/千克,市場調查發(fā)現,該產品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數關系如圖所示:

(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.

(1)如果AC=6cm,BC=8cm,試求△ACD的周長;

(2)如果∠CAD:∠BAD=1:2,求∠B的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結MDME.設AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線 y=x3 x 軸、y 軸分別交于點 A、B,線段 AB 為直角邊在第一內作等腰 RtABC,∠BAC90. 點 P x 軸上的一個動點,設 P(x,0)

(1)x ______________時,PBPC 的值最;

(2)x ______________時,|PBPC|的值最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形.如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準菱形.

(1)判斷與推理:
①鄰邊長分別為2和3的平行四邊形是階準菱形;
(2)小明為了剪去一個菱形,進行了如下操作:如圖2,把ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F,得到四邊形ABFE.請證明四邊形ABFE是菱形.
(3)操作、探究與計算:
①已知ABCD的鄰邊長分別為1,a(a>1),且是3階準菱形,請畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;
②已知ABCD的鄰邊長分別為a,b(a>b),滿足a=6b+r,b=5r,請寫出ABCD是幾階準菱形.

查看答案和解析>>

同步練習冊答案