精英家教網(wǎng)如圖所示,BD,CE是△ABC的高,求證:E,B,C,D四點在同一個圓上.
分析:求證E,B,C,D四點在同一個圓上,△BCD是直角三角形,則三個頂點在斜邊中點為圓心的圓上,因而只要再證明F到BC得中點的距離等于BC的一半就可以.
解答:精英家教網(wǎng)證明:如圖所示,取BC的中點F,連接DF,EF.
∵BD,CE是△ABC的高,
∴△BCD和△BCE都是直角三角形.
∴DF,EF分別為Rt△BCD和Rt△BCE斜邊上的中線,
∴DF=EF=BF=CF.
∴E,B,C,D四點在以F點為圓心,
1
2
BC為半徑的圓上.
點評:求證幾個點在同一個圓上就是證明這幾個點到一個點的距離相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1)如圖所示,BD,CE分別是△ABC的外角平分線,過點A作AF⊥BD,AG⊥CE,垂足分別為F,G,連接FG,延長AF,AG,與直線BC分別交于點M、N,那么線段FG與△ABC的周長之間存在的數(shù)量關系是什么?
即:FG=
 
(AB+BC+AC)
(直接寫出結(jié)果即可)
精英家教網(wǎng)
(2)如圖,若BD,CE分別是△ABC的內(nèi)角平分線;其他條件不變,線段FG與△ABC三邊之間又有怎樣的數(shù)量關系?請寫出你的猜想,并給予證明.
精英家教網(wǎng)
(3)如圖,若BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線,其他條件不變,線段FG與△ABC三邊又有怎樣的數(shù)量關系?直接寫出你的猜想即可.不需要證明.答:線段FG與△ABC三邊之間數(shù)量關系是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖所示,BD,CE是△ABC的兩條高,它們的交點為O.
(1)圖中有哪幾個直角三角形?
(2)試說明∠1=∠2;
(3)若∠A=50°,∠ABC=70°,求∠3和∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,BD、CE是△ABC的高,且BD=CE.
求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,BD、CE是△ABC,AC、AB邊上的高,BF=AC,CG=AB;
求證:AG=AF.

查看答案和解析>>

同步練習冊答案