【題目】甲、乙兩人參加射擊比賽,兩人成績?nèi)鐖D所示.
(1)填表:
平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) | |
甲 | 7 | 1 | 7 | |
乙 | 9 |
(2)只看平均數(shù)和方差,成績更好的是 .(填“甲”或“乙”)
(3)僅就折線圖上兩人射擊命中環(huán)數(shù)的走勢看,更有潛力的是 .(填“甲”或“乙”)
【答案】(1)7,7,8,9;(2)甲;(3)乙
【解析】
(1)根據(jù)圖表,把乙的所有數(shù)據(jù)相加除以6,可求乙的平均數(shù),由中位數(shù),眾數(shù)的定義即可求出相應的數(shù)據(jù);
(2)因為甲、乙平均數(shù)相同,從方差來看,方差越小成績越穩(wěn)定即可得;
(3)從圖表走勢看,乙命中的環(huán)數(shù)越來越高,而且最高10環(huán),所以乙最有潛力.
(1)乙的數(shù)據(jù)分別為1,6,7,9,9,10.
∴平均數(shù)為:(1+6+7+9+9+10)÷6=7,眾數(shù)為9,中位數(shù)為:(7+9)÷2=8,
甲的數(shù)據(jù)為:5,7,7,8,8,7,所以眾數(shù)為7,
故答案為:7,7,8,9;
填表:
平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) | |
甲 | 7 | 1 | 7 | 7 |
乙 | 7 | 9 | 8 | 9 |
(2)因為甲、乙的平均數(shù)都是7,所以方差越小越穩(wěn)定,
∴甲成績更好,
故答案為:甲;
(3)從圖表看出,乙中的環(huán)數(shù)越來越高,而且有最高10環(huán),所以乙最有潛力,
故答案為:乙.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y 軸于點C,且點B為線段AC中點,過點A作AD⊥x軸子點D,點E 為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.
(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;
(2)判斷線段GB與DF的長度關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年“霧霾”成為全社會關注的話題某校環(huán)保志愿者小組對該市2018年空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽查了50天的空氣質(zhì)量指數(shù)(AQI),得到以下數(shù)據(jù):43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、52.
(1)請你完成如下的統(tǒng)計表;
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 300以上 |
質(zhì)量等級 | A(優(yōu)) | B(良) | C(輕度污染) | D(中度污染) | E(重度污染) | F(嚴重污染) |
天數(shù) |
(2)請你根據(jù)題中所給信息繪制該市2018年空氣質(zhì)量等級條形統(tǒng)計圖;
(3)請你估計該市全年空氣質(zhì)量等級為“重度污染”和“嚴重污染”的天數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、CD上的點,且CE=CF,連接AE,AF,取AE的中點M,EF的中點N,連接BM,MN.
(1)請判斷線段BM與MN的數(shù)量關系和位置關系,并予以證明.
(2)如圖2,若點E在CB的延長線上,點F在CD的延長線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F、G、H分別是四邊形ABCD邊AB、BC、CD、AD的中點,下列說法正確的是( 。
A.當AC⊥BD時,四邊形EFGH是菱形
B.當AC=BD時,四邊形EFGH是矩形
C.當四邊形ABCD是平行四邊形時,則四邊形EFGH是矩形
D.當四邊形ABCD是矩形時,則四邊形EFGH是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與x軸交于點A、B(點A在點B的左邊), 點P在拋物線上.
(1)點C是x軸上一個動點,四邊形ACPQ是正方形,則滿足條件 的點Q的坐標是______.
(2)連結(jié)AP,以AP為一條對角線作平行四邊形AMPN,使點M在 以點(1,0),(0,1)為端點的線段上,則當點N的縱坐標取最小值時,N的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.
(1)請判斷直線BC與⊙O的位置關系,并說明理由;
(2)已知AD=5,CD=4,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com