【題目】在平面直角坐標系中,二次函數的圖象交坐標軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點,點 P 是直線 BC 下方拋物線上一動點.
(1) 求這個二次函數的解析式;
(2) 是否存在點 P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點坐標;若不存在,請說明理由;
(3) 在拋物線上是否存在點 D(與點 A 不重合)使得 S△DBC=S△ABC,若存在,求出點 D的坐標;若不存在,請說明理由.
【答案】(1)拋物線解析式為y=x2﹣3x﹣4;(2)存在滿足條件的P點,其坐標為(,﹣2);(3)存在滿足條件的D點,其坐標為(5,6).
【解析】
(1)由A、B、C三點的坐標,利用待定系數法可求得拋物線解析式;
(2)由題意可知點P在線段OC的垂直平分線上,則可求得P點縱坐標,代入拋物線解析式可求得P點坐標;
(3)存在.分兩種情況討論,再利用待定系數法以及解方程組即可解決問題.
(1)設拋物線解析式為y=ax2+bx+c,
把A、B、C三點坐標代入可得,解得,
∴拋物線解析式為y=x2﹣3x﹣4;
(2)如圖1,作OC的垂直平分線DP,交OC于點D,交BC下方拋物線于點P,
∴PO=PC,此時P點即為滿足條件的點,
∵C(0,﹣4),
∴D(0,﹣2),
∴P點縱坐標為﹣2,
代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,
∴存在滿足條件的P點,其坐標為(,﹣2);
(3)如圖2,
①當D點在直線BC的上方時,過A點作AD1∥BC,交拋物線于D1,此時,使得S△DBC=S△ABC,
∵B(4,0),C(0,﹣4),
∴直線BC的解析式為y=x﹣4,
∵AD1∥BC,
∴設直線AD11的解析式為y=x+n,
把A(﹣1,0)代入得,0=﹣1+n,則n=1,
∴直線AD1的解析式為y=x+1,
解得或,
∴D1的坐標為(5,6),
②當D點在直線BC的下方時,
由直線AD1的解析式為y=x+1可知直線AD1和y軸的交點E的坐標為(0, 1),
∴CE=5,
∴直線AD的解析式為y=x﹣10,
∵方程x2﹣3x﹣4=x﹣10無實數根,
故存在滿足條件的D點,其坐標為(5,6).
科目:初中數學 來源: 題型:
【題目】寒假麗麗用一塊邊長為10的正方形彩紙為她的人偶玩具做了一件披風,如圖所示,先將正方形紙片對折,展平后得到中線,再分別沿折痕,將點,點都折到上點處,此時領口的長為( )
A.B.C.3D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構成四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據以上信息,解答下列問題:
(1)設租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關于的函數表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經過B點,且頂點在直線y=上.
(1)求拋物線對應的函數關系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設點M的橫坐標為t,MN的長度為s,求s與t之間的函數關系式,寫出自變量t的取值范圍,并求s取大值時,點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數共有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設點D的橫坐標為m,三角形ADC的面積為S,求出S與m的函數關系式,并直接寫出自變量m的取值范圍;請問當m為何值時,S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線y=﹣x+2與x軸交于點B,與y軸交于點C,二次函數y=﹣+bx+c的圖象經過B,C兩點,且與x軸的負半軸交于點A.
(1)求二次函數的表達式;
(2)如圖1,點D是拋物線第四象限上的一動點,連接DC,DB,當S△DCB=S△ABC時,求點D坐標;
(3)如圖2,在(2)的條件下,點Q在CA的延長線上,連接DQ,AD,過點Q作QP∥y軸,交拋物線于P,若∠AQD=∠ACO+∠ADC,請求出PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com