【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿(mǎn)足若 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長(zhǎng);
(3)求tan∠E的值.

【答案】
(1)證明:∵AB是⊙O的直徑,弦CD⊥AB,

∴DG=CG,

∴由垂徑定理可知:

∴∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),

∴△ADF∽△AED


(2)解:∵ = ,CF=2,

∴FD=6,

∴CD=DF+CF=8,

∴由垂徑定理可知:CG=DG=4,

∴FG=CG﹣CF=2


(3)解:∵AF=3,F(xiàn)G=2,

在△AFG中,

∴由勾股定理可知:AG= =

tan∠E=tan∠ADF= =


【解析】(1)AB是⊙O的直徑,弦CD⊥AB,DG=CG,由垂徑定理可知: ,從而可知∠ADF=∠AED,從而可證明△ADF∽△AED.(2)由于 = ,所以CF=2,F(xiàn)D=6,從而CD=DF+CF=8,由垂徑定理可知CD=DG=4,從而求出FG的長(zhǎng)度;(3)由于AF=3,F(xiàn)G=2,由勾股定理可知:AG= = ,從而可知tan∠E=tan∠ADF= =
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,∠A=60°BD、BE三等分∠ABCCD、CE三等分∠ACB,連接DE,則∠BDE=_____________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AC=8cm,BC=6cm,M AC上,且AM=6cm,過(guò)點(diǎn) A( BC AC 同側(cè))作射線 ANAC,若動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā),沿射線 AN 勻速運(yùn)動(dòng),運(yùn)動(dòng)速度為 1cm/s,設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 t 秒.

(1)經(jīng)過(guò) 秒時(shí),RtAMP 是等腰直角三角形?

(2)經(jīng)過(guò)幾秒時(shí),PM⊥MB?

(3)經(jīng)過(guò)幾秒時(shí),PM⊥AB?

(4)當(dāng)△BMP 是等腰三角形時(shí),直接寫(xiě)出 t 的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在A、B兩家超市發(fā)現(xiàn)他看中的隨身聽(tīng)和書(shū)包的單價(jià)都相同,隨身聽(tīng)和書(shū)包單價(jià)之和是452元,且隨身聽(tīng)的單價(jià)比書(shū)包單價(jià)的4倍少8元.

(1)求小明看中的隨身聽(tīng)和書(shū)包單價(jià)各是多少元?

(2)假日期間商家開(kāi)展促銷(xiāo)活動(dòng),超市A所有商品打八折銷(xiāo)售,超市B全場(chǎng)購(gòu)物滿(mǎn)100元返購(gòu)物券30元銷(xiāo)售(購(gòu)物滿(mǎn)100元返購(gòu)物券30元,購(gòu)物滿(mǎn)200元返購(gòu)物券60元,以此類(lèi)推;不足100元不返券,購(gòu)物券可通用).小明只有400元錢(qián),他能買(mǎi)到一只隨身聽(tīng)和一個(gè)書(shū)包嗎?若能,選擇在哪一家購(gòu)買(mǎi)更省錢(qián).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南昌的霧霾引起了小張對(duì)環(huán)保問(wèn)題的重視.一次旅游小張思考了一個(gè)問(wèn)題.從某地到南昌,若乘火車(chē)需要小時(shí),若乘汽車(chē)需要小時(shí).這兩種交通工具平均每小時(shí)二氧化碳的排放量之和為千克,火車(chē)全程二氧化碳的排放總量比汽車(chē)的多千克,分別求火車(chē)和汽車(chē)平均每小時(shí)二氧化碳的排放量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長(zhǎng)DA和QP交于點(diǎn)O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時(shí)針?lè)较蜷_(kāi)始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).

發(fā)現(xiàn):如圖2,當(dāng)點(diǎn)P恰好落在BC邊上時(shí),求a的值即陰影部分的面積;
拓展:如圖3,當(dāng)線段OQ與CB邊交于點(diǎn)M,與BA邊交于點(diǎn)N時(shí),設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長(zhǎng),并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時(shí),直接寫(xiě)出sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是

查看答案和解析>>

同步練習(xí)冊(cè)答案