【題目】如圖,在□ABCD中,ECD上一點,連接AE,BD,且AEBD交于點F,若EFAF=2:5,求SDEFS四邊形EFBC

【答案】4:31

【解析】

由平行四邊形的性質(zhì)可證明△DEF∽△BAF,可求得△DEF和△AFE、△ABF的面積之間的關(guān)系,從而可求得△DEF和△BCD的面積之間的關(guān)系,可求得答案.

解:∵四邊形ABCD為平行四邊形,
∴CD∥AB,
∴△DEF∽△BAF,

,

== , = ,

設(shè)SDEF=S,則SABF=S,SADF=S,
∴SABD=SADF+SABF=S+S=S,
∵四邊形ABCD為平行四邊形,
∴SABD=SDBC=S,
∴S四邊形EFBC=SBDC-SDEF=S-S=S,
∴SDEF:S四邊形EFBC=4:31.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°后,得到線段AB,則點B的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,4).

(1)求此拋物線的解析式;

(2)設(shè)點P(2,n)在此拋物線上,APy軸于點E,連接BE,BP,請判斷BEP的形狀,并說明理由;

(3)設(shè)拋物線的對稱軸交x軸于點D,在線段BC上是否存在點Q,使得DBQ成為等腰直角三角形?若存在,求出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)在同一平面直角坐標系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙OAC于點D,過點D⊙O的切線交AB于點E.

(1)如圖1,若∠ABC=90°,求證:OE∥AC;

(2)如圖2,已知AB=AC,若sin∠ADE=tanA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動圓⊙O始終與Rt△ACB的斜邊AB相切于動點P,且⊙O始終經(jīng)過直角頂點C

(1)如圖2,當⊙O 運動至與直角邊AC相切時,求此時⊙O 的半徑r的長;

(2)試求⊙O 的半徑r的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=2,點M在BC上,連接AM,作AMN=AMB,點N在直線AD上,MN交CD于點E

(1)求證:AMN是等腰三角形;

(2)求BMAN的最大值;

(3)當M為BC中點時,求ME的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在一次社會實踐活動中,組織學生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實踐活動的效果,學校隨機抽取了部分學生,對“最喜歡的景點”進行了問卷調(diào)查,并根據(jù)統(tǒng)計結(jié)果繪制了如下不完整的統(tǒng)計圖.其中最喜歡烈士陵園的學生人數(shù)與最喜歡博物館的學生人數(shù)之比為2:1,請結(jié)合統(tǒng)計圖解答下列問題:

(1)本次活動抽查了   名學生;

(2)請補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,最喜歡植物園的學生人數(shù)所對應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會實踐活動的學生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.

(3)在拋物線的第二象限圖象上是否存在一點P,使得PBC的面積最大?若存在,求出點P的坐標及PBC的面積最大值;若不存,請說明理由.

查看答案和解析>>

同步練習冊答案