【題目】某超市用1200元購(gòu)進(jìn)一批甲玩具,用800元購(gòu)進(jìn)一批乙玩具,所購(gòu)甲玩具件數(shù)是乙玩具件數(shù)的,已知甲玩具的進(jìn)貨單價(jià)比乙玩具的進(jìn)貨單價(jià)多1元.

1)求:甲、乙玩具的進(jìn)貨單價(jià)各是多少元?

2)玩具售完后,超市決定再次購(gòu)進(jìn)甲、乙玩具(甲、乙玩具的進(jìn)貨單價(jià)不變),購(gòu)進(jìn)乙玩具的件數(shù)比甲玩具件數(shù)的2倍多60件,求:該超市用不超過2100元最多可以采購(gòu)甲玩具多少件?

【答案】1)甲6元,乙5元;(2112

【解析】

1)設(shè)甲種玩具的進(jìn)貨單價(jià)為x元,則乙種玩具的進(jìn)價(jià)為元,根據(jù)結(jié)合1200元購(gòu)進(jìn)一批甲玩具,用800元購(gòu)進(jìn)一批乙玩具,所購(gòu)甲玩具件數(shù)是乙玩具件數(shù)的,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;

2)設(shè)購(gòu)進(jìn)甲種玩具y件,則購(gòu)進(jìn)乙種玩具件,根據(jù)進(jìn)貨的總資金不超過2100元,即可得出關(guān)于y的一元一次不等式,解之取其中的整數(shù),即可得出結(jié)論.

解:(1)設(shè)甲種玩具的進(jìn)貨單價(jià)為x元,則乙種玩具的進(jìn)價(jià)為元,

根據(jù)題意得:,

解得:

經(jīng)檢驗(yàn),是原方程的解,

答:甲種玩具的進(jìn)貨單價(jià)6元,則乙種玩具的進(jìn)價(jià)為5元.

2)設(shè)購(gòu)進(jìn)甲種玩具y件,則購(gòu)進(jìn)乙種玩具件,

根據(jù)題意得:,

解得:,

y為整數(shù),

答:該超市用不超過2100元最多可以采購(gòu)甲玩具112件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),△ABC中,AB=AC,∠B、∠C的平分線相交于點(diǎn)O,過點(diǎn)OEFBCABACE、F

EFBE、CF間有怎樣的數(shù)量關(guān)系?A與∠BOC怎樣的數(shù)量關(guān)系?說明理由。

②若ABAC,其他條件不變,如圖(2),圖中還有幾個(gè)等腰三角形嗎?如果有,第①問中EFBE、CF間的關(guān)系還存在嗎?∠A與∠BOC的數(shù)量關(guān)系還存在嗎?

③若△ABC中,ABAC,∠B的平分線與三角形外角∠ACG的平分線CO交于O,過O點(diǎn)作OEBCABE,交ACF。如圖(3),EFBECF間的關(guān)系如何?∠A與∠BOC的數(shù)量關(guān)系?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】許多代數(shù)恒等式可以借助圖形的面積關(guān)系直觀表達(dá),如圖①,根據(jù)圖中面積關(guān)系可以得到:。

1)如圖②,根據(jù)圖中面積關(guān)系,寫出一個(gè)關(guān)于的等式   

2)利用(1)中的等式求解:,則   

3)小明用8個(gè)面積一樣大的長(zhǎng)方形(寬,長(zhǎng))拼圖,拼出了如圖甲、乙的兩種圖案;圖案甲是一個(gè)大的正方形,中間陰影部分是邊長(zhǎng)為3的小正方形;圖案乙是一個(gè)大的長(zhǎng)方形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,EBC邊上一點(diǎn),GBC延長(zhǎng)線上一點(diǎn),過點(diǎn)E作∠AEM60°,交∠ACG的平分線于點(diǎn)M

1)如圖1,當(dāng)點(diǎn)EBC邊的中點(diǎn)位置時(shí),求證:AEEM

2)如圖2,當(dāng)點(diǎn)EBC邊的任意位置時(shí),(1)中的結(jié)論是否成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與BC重合),連接AD,作∠ADE=40°,DE交線段ACE

1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠DEC=______°;點(diǎn)DBC運(yùn)動(dòng)時(shí),∠BDA逐漸變______(填);

2)當(dāng)DC等于多少時(shí),ABD≌△DCE,請(qǐng)說明理由;

3)在點(diǎn)D的運(yùn)動(dòng)過程中,ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù).若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在RtABC中,∠C=90°,AC=15,BC=8,DAB的中點(diǎn),E點(diǎn)在邊AC上,將△BDE沿DE折疊得到△B1DE,若△B1DE與△ADE重疊部分面積為△ADE面積的一半,則CE=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中, , DAB邊的中點(diǎn),EAC邊上一點(diǎn),聯(lián)結(jié)DE,過點(diǎn)DBC邊于點(diǎn)F,聯(lián)結(jié)EF

(1)如圖1,當(dāng)時(shí),求EF的長(zhǎng);

(2)如圖2,當(dāng)點(diǎn)EAC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請(qǐng)說出變化情況;如果保持不變,請(qǐng)求出的正切值;

(3)如圖3,聯(lián)結(jié)CDEF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請(qǐng)直接寫出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD,BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn),連接DH,交BE于點(diǎn)G.

(1)求證:△ADC≌△FDB;

(2)求證:CE=BF;

(3)連結(jié)CG,判斷△ECG的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8字”的性質(zhì)及應(yīng)用:

1)如圖AD、BC相交于點(diǎn)O,得到一個(gè)“8字”ABCD,求證:∠A+B=∠C+D

2)圖中共有多少個(gè)“8字”?

3)如圖,∠ABC和∠ADC的平分線相交于點(diǎn)E,利用(1)中的結(jié)論證明∠E(∠A+C).

查看答案和解析>>

同步練習(xí)冊(cè)答案