【題目】如圖,AB為⊙O的直徑,C上一點,ADOC, AD交⊙O于點D,連接AC,CD,設(shè)∠BOC=x°,∠ACD=y°,則下列結(jié)論成立的是(

A. x+y=90 B. 2x+y=90 C. 2x+y=180 D. x=y

【答案】A

【解析】

連接BC,由AB是直徑,得∠ACB=90°.根據(jù)圓內(nèi)接四邊形性質(zhì)得∠ACB+ACD+BAD=180°,

由平行線性質(zhì)得∠BAD=BOC= y°,故x+y+90=180.

連接BC,

因為,AB是直徑,

所以,∠ACB=90°.

因為,四邊形ADCB是圓的內(nèi)接四邊形,

所以,∠ACB+ACD+BAD=180°,

又因為ADOC,

所以,∠BAD=BOC= x°

所以,x+y+90=180,

所以,x+y=90

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊ABE、ADF,延長CBAE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=EAF;③△ECF是等邊CGAE( 。

A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D.

(1)求證:AC平分∠DAB;

(2)求證:AC2=ADAB;

(3)若AD=,sinB=,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)某市在道路改造過程中,需要鋪設(shè)一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設(shè)20米,且甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同.

(1)甲、乙工程隊每天各能鋪設(shè)多少米?

(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量(以百米為單位)的方案有幾種?請你幫助設(shè)計出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有3個完全相同的小球,把它們分別標號為12,3,放在一個口袋中,隨機地摸出一個小球不放回,再隨機地摸出一個小球.

(1) 采用樹形圖法(或列表法)列出兩次摸球出現(xiàn)的所有可能結(jié)果;

(2) 求摸出的兩個球號碼之和等于5的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中秋節(jié)是我國傳統(tǒng)佳節(jié),圓圓同學帶了4個月餅(除餡不同外,其它均相同),其中有兩個火腿餡月餅、一個蛋黃餡和一個棗泥餡月餅.

(1)請你根據(jù)上述描述,寫出一個不可能事件.

(2)圓圓準備從中任意拿出兩個送給她的好朋友月月.

①用樹狀圖或列表的方法列出圓圓拿到兩個月餅的所有可能結(jié)果;

②請你計算圓圓拿到的兩個月餅都是火腿餡的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)積極創(chuàng)建環(huán)保示范社區(qū),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,已知溫馨提示牌的單價為每個30元,垃圾箱的單價為每個90元,共需購買溫馨提示牌和垃圾箱共100個.

(1)若規(guī)定溫馨提示牌和垃圾箱的個數(shù)之比為1:4,求所需的購買費用;

(2)若該小區(qū)至多安放48個溫馨提示牌,且費用不超過6300元,請列舉所有購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,人們越來越注重營養(yǎng)健康,有一種有機水果在市場上特別受歡迎,某大型超市以10/千克的價格在產(chǎn)地收購了6000千克水果,立即將其冷藏,請根據(jù)下列信息解決問題:

①水果的市場價每天每千克上漲0.1元;

②平均每天有10千克的該水果損壞,不能出售;

③每天的冷藏費用為300元;

④該水果最多保存110天;

1)若將這批水果存放天后一次性出售,則天后這批水果的銷售單價為 元;

2)將這批水果存放多少天后一次性出售所得利潤為9600元?

3)將這批水果存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB⊙O的切線.

2)已知AOO于點E,延長AOO于點D,tanD=,求的值.

(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

【答案】(1)證明見解析(2) (3)

【解析】試題分析:(1)過OOF⊥ABF,由角平分線上的點到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的長,再證明△B0F∽△BAC,得,設(shè)BO="y" ,BF=z,列二元一次方程組即可解決問題.

試題解析:(1)證明:作OF⊥ABF

∵AO∠BAC的角平分線,∠ACB=90

∴OC=OF

∴AB⊙O的切線

2)連接CE

∵AO∠BAC的角平分線,

∴∠CAE=∠CAD

∵∠ACE所對的弧與∠CDE所對的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,設(shè)AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易證Rt△B0F∽Rt△BAC

,

設(shè)BO=y BF=z

4z=93y,4y=123z

解得z=y=

∴AB=4=

考點:圓的綜合題.

型】解答
結(jié)束】
22

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且A點坐標為(-6,0).

(1)求此二次函數(shù)的表達式;

(2)若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

查看答案和解析>>

同步練習冊答案