【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上.
(Ⅰ)的長等于__________;
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出點(diǎn),點(diǎn)E在上,且,點(diǎn)F在上,使其滿足,并簡要說明點(diǎn)的位置是如何找到的(不要求證明)______.
【答案】 取格點(diǎn)且滿足 連接交于再取關(guān)于對稱的格點(diǎn),滿足 延長交于
【解析】
(1)利用勾股定理直接計(jì)算即可;
(2)取格點(diǎn)且滿足 連接可得答案,再取關(guān)于對稱的格點(diǎn),滿足 延長與相交可得答案.
解:(1)由勾股定理得:
故答案為:
(2)取格點(diǎn)且滿足 連接交于
理由如下:由題意知:
所以點(diǎn)即為所求作的點(diǎn).
再取關(guān)于對稱的格點(diǎn),滿足 延長交于
理由如下:
所以點(diǎn)即為所求作的點(diǎn).
故答案為:取格點(diǎn)且滿足 連接交于再取關(guān)于對稱的格點(diǎn),滿足 延長交于
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年某省為加快建設(shè)綜合交通體系,對鐵路、公路、機(jī)場三個(gè)重大項(xiàng)目加大建設(shè)資金的投入.
(1)機(jī)場建設(shè)項(xiàng)目中所有6個(gè)機(jī)場投入的建設(shè)資金金額統(tǒng)計(jì)如下圖,已知機(jī)場投入的建設(shè)資金金額是機(jī)場、所投入建設(shè)資金金額之和的三分之二,求機(jī)場投入的建設(shè)資金金額是多少億元?并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)將鐵路、公路、機(jī)場三項(xiàng)建設(shè)所投入的資金金額繪制成如下扇形統(tǒng)計(jì)圖以及統(tǒng)計(jì)表,根據(jù)扇形統(tǒng)計(jì)圖及統(tǒng)計(jì)表中的信息,求得 ; ; ; ; .(請直接填寫計(jì)算結(jié)果)
鐵路 | 公路 | 機(jī)場 | 鐵路、公路、機(jī)場三項(xiàng)投入建設(shè)資金總金額(億元) | |
投入資金(億元) | 300 | |||
所占百分比 | 34% | 6% | ||
所占圓心角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是弧AB所對弦AB上一動(dòng)點(diǎn),過點(diǎn)P作PM⊥AB交AB于點(diǎn)M,連接MB,過點(diǎn)P作PN⊥MB于點(diǎn)N.已知AB =6cm,設(shè)A 、P兩點(diǎn)間的距離為xcm,P、N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.0 | 2.3 | 2.1 | 0.9 | 0 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△PAN為等腰三角形時(shí),AP的長度約為____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,張老師引導(dǎo)同學(xué)進(jìn)行如下探究:如圖1,將長為的鉛筆斜靠在垂直于水平桌面的直尺的邊沿上,一端固定在桌面上,圖2是示意圖.
活動(dòng)一
如圖3,將鉛筆繞端點(diǎn)順時(shí)針旋轉(zhuǎn),與交于點(diǎn),當(dāng)旋轉(zhuǎn)至水平位置時(shí),鉛筆的中點(diǎn)與點(diǎn)重合.
數(shù)學(xué)思考
(1)設(shè),點(diǎn)到的距離.
①用含的代數(shù)式表示:的長是_________,的長是________;
②與的函數(shù)關(guān)系式是_____________,自變量的取值范圍是____________.
活動(dòng)二
(2)①列表:根據(jù)(1)中所求函數(shù)關(guān)系式計(jì)算并補(bǔ)全表格.
6 | 5 | 4 | 3.5 | 3 | 2.5 | 2 | 1 | 0.5 | 0 | |
0 | 0.55 | 1.2 | 1.58 | 1.0 | 2.47 | 3 | 4.29 | 5.08 |
②描點(diǎn):根據(jù)表中數(shù)值,描出①中剩余的兩個(gè)點(diǎn).
③連線:在平面直角坐標(biāo)系中,請用平滑的曲線畫出該函數(shù)的圖象.
數(shù)學(xué)思考
(3)請你結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì)或結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校初二和初三兩個(gè)年級各有600名同學(xué),為了科普衛(wèi)生防疫知識,學(xué)校組織了一次在線知識競賽,小宇分別從初二、初三兩個(gè)年級隨機(jī)抽取了40名同學(xué)的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.
.初二、初三年級學(xué)生知識競賽成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:,,,,):
.初二年級學(xué)生知識競賽成績在這一組的數(shù)據(jù)如下:
80 80 81 83 83 84 84 85 86 87 88 89 89
.初二、初三學(xué)生知識競賽成績的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
初二年級 | 80.8 | 96.9 | |
初三年級 | 80.6 | 86 | 153.3 |
根據(jù)以上信息,回答下列問題:
(1)補(bǔ)全上面的知識競賽成績頻數(shù)分布直方圖;
(2)寫出表中的值;
(3)同學(xué)看到上述的信息后,說自己的成績能在本年級排在前40%,同學(xué)看到同學(xué)的成績后說:“很遺憾,你的成績在我們年級進(jìn)不了前50%”.請判斷同學(xué)是________(填“初二”或“初三”)年級的學(xué)生,你判斷的理由是________.
(4)若成績在85分及以上為優(yōu)秀,請估計(jì)初二年級競賽成績優(yōu)秀的人數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l及直線l外一點(diǎn)P.如圖,
(1)在直線l上取一點(diǎn)A,連接PA;
(2)作PA的垂直平分線MN,分別交直線l,PA于點(diǎn)B,O;
(3)以O為圓心,OB長為半徑畫弧,交直線MN于另一點(diǎn)Q;
(4)作直線PQ.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( 。
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,則∠APQ=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九(5)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如下的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(5)班的學(xué)生人數(shù)為_________,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中n=__________,m=___________;
(3)排球興趣小組4名學(xué)生中有2男2女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,點(diǎn)O在BD上,以O為圓心的圓恰好經(jīng)過A、B、C三點(diǎn),⊙O交BD于E,交AD于F,且,連接OA、OF.
(1)求證:四邊形ABCD是菱形;
(2)若∠AOF=3∠FOE,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時(shí)可達(dá)35cm,點(diǎn)A、B、C在同一條直線上,在箱體底端裝有圓形的滾筒⊙A,⊙A與水平地面切于點(diǎn)D,在拉桿伸長至最大的情況下,當(dāng)點(diǎn)B距離水平地面38cm時(shí),點(diǎn)C到水平面的距離CE為59cm.設(shè)AF∥MN.
(1)求⊙A的半徑長;
(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時(shí),CE為80cm,∠CAF=64°.求此時(shí)拉桿BC的伸長距離.
(精確到1cm,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com