【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過(guò)Q作QE⊥AB于點(diǎn)E,過(guò)M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
【答案】解:(1)∵四邊形ABCD是正方形
∴∠A=∠B=∠D=90°,AD=AB
∵QE⊥AB,MF⊥BC
∴∠AEQ=∠MFB=90°
∴四邊形ABFM、AEQD都是矩形
∴MF=AB,QE=AD,MF⊥QE
又∵PQ⊥MN
∴∠EQP=∠FMN
又∵∠QEP=∠MFN=90°
∴△PEQ≌△NFM.
(2)∵點(diǎn)P是邊AB的中點(diǎn),AB=2,DQ=AE=t
∴PA=1,PE=1-t,QE=2
由勾股定理,得PQ==
∵△PEQ≌△NFM
∴MN=PQ=
又∵PQ⊥MN
∴S===t2-t+
∵0≤t≤2
∴當(dāng)t=1時(shí),S最小值=2.
綜上:S=t2-t+,S的最小值為2.
【解析】試題分析:(1)由四邊形ABCD是正方形得到∠A=∠B=∠D=90°,AD=AB,又由∠EQP=∠FMN,而證得;
(2)分為兩種情況:①當(dāng)E在AP上時(shí),由點(diǎn)P是邊AB的中點(diǎn),AB=2,DQ=AE=t,又由勾股定理求得PQ,由△PEQ≌△NFM得到PQ的值,又PQ⊥MN求得面積S,由t范圍得到S的最小值;②當(dāng)E在BP上時(shí),同法可求S的最小值.
試題解析:(1)∵四邊形ABCD是正方形,
∴∠A=∠B=∠D=90°,AD=AB,
∵QE⊥AB,MF⊥BC,
∴∠AEQ=∠MFB=90°,
∴四邊形ABFM、AEQD都是矩形,
∴MF=AB,QE=AD,MF⊥QE,
又∵PQ⊥MN,
∴∠1+∠EQP=90°,∠2+∠FMN=90°,
∵∠1=∠2,
∴∠EQP=∠FMN,
又∵∠QEP=∠MFN=90°,
∴△PEQ≌△NFM;
(2)分為兩種情況:①當(dāng)E在AP上時(shí),
∵點(diǎn)P是邊AB的中點(diǎn),AB=2,DQ=AE=t,
∴PA=1,PE=1-t,QE=2,
由勾股定理,得PQ=,
∵△PEQ≌△NFM,
∴MN=PQ=,
又∵PQ⊥MN,
∴S=t2-t+,
∵0≤t≤2,
∴當(dāng)t=1時(shí),S最小值=2.
②當(dāng)E在BP上時(shí),
∵點(diǎn)P是邊AB的中點(diǎn),AB=2,DQ=AE=t,
∴PA=1,PE=t-1,QE=2,
由勾股定理,得PQ=,
∵△PEQ≌△NFM,
∴MN=PQ=,
又∵PQ⊥MN,
∴S=t2-t+,
∵0≤t≤2,
∴當(dāng)t=1時(shí),S最小值=2.
綜上:S=t2-t+,S的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)公民的節(jié)約意識(shí),合理利用天然氣資源,某市自1月1日起對(duì)市區(qū)民用管道天然氣價(jià)格進(jìn)行調(diào)整,實(shí)行階梯式氣價(jià),調(diào)整后的收費(fèi)價(jià)格如表所示:
每月用氣量 | 單價(jià)(元/m3) |
不超出80m3的部分 | 2.5 |
超出80m3不超出130m3的部分 | a |
超出130m3的部分 | a+0.5 |
(1)若甲用戶3月份用氣125m3,繳費(fèi)335元,求a的值;
(2)在(1)的條件下,若乙用戶3月份繳費(fèi)392元,則乙用戶3月份的用氣量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向.
(1)求∠CBA的度數(shù);
(2)求出這段河的寬.(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰直角三角形ABC的直角邊AB的長(zhǎng)為,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到△AB′C′,AC與B′C′相交于點(diǎn)D,則圖中陰影△ADC′的面積等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b分別交x軸、y軸于A(1,0)、B(0,﹣1),交雙曲線y=于點(diǎn)C、D.
(1)求k、b的值;
(2)寫出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示.已知箱體長(zhǎng)AB=50cm,拉桿的伸長(zhǎng)距離最大時(shí)可達(dá)35cm,點(diǎn)A,B,C在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點(diǎn)D.在拉桿伸長(zhǎng)至最大的情況下,當(dāng)點(diǎn)B距離水平地面38cm時(shí),點(diǎn)C到水平地面的距離CE為59cm.
設(shè)AF∥MN.
(1)求⊙A的半徑長(zhǎng);
(2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感到較為舒服.某人將手自然下垂在C端拉旅行箱時(shí),CE為80cm,=64°.求此時(shí)拉桿BC的伸長(zhǎng)距離.(精確到1cm,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An.
(1)若點(diǎn)A1的坐標(biāo)為(2,1),則點(diǎn)A4的坐標(biāo)為_____;
(2)若點(diǎn)A1的坐標(biāo)為(a,b),對(duì)于任意的正整數(shù)n,點(diǎn)An均在x軸上方,則a,b應(yīng)滿足的條件為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)△ADF的面積最大時(shí),有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、M、N、F構(gòu)成四邊形AMNF,請(qǐng)求出四邊形AMNF的周長(zhǎng)最小時(shí)點(diǎn)N的橫坐標(biāo);
(3)如圖3,將△DBC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)△CPQ是等腰三角形時(shí),求CP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.
(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買方案供這個(gè)學(xué)校選擇.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com