【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長(zhǎng);
(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大。
【答案】(1) AB=;PD=; (2)最大值為6,此時(shí)∠APB=135度.
【解析】
(1)作輔助線,過(guò)點(diǎn)A作AE⊥PB于點(diǎn)E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;
求PD的值有兩種解法,解法一:可將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△P'AB,可得△PAD≌△P'AB,求PD長(zhǎng)即為求P′B的長(zhǎng),在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;
解法二:過(guò)點(diǎn)P作AB的平行線,與DA的延長(zhǎng)線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長(zhǎng),進(jìn)而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根據(jù)勾股定理可將PD的值求出;
(2)將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△P'AB,PD的最大值即為P'B的最大值,故當(dāng)P'、P、B三點(diǎn)共線時(shí),P'B取得最大值,根據(jù)P'B=PP'+PB可求P'B的最大值,此時(shí)∠APB=180°-∠APP'=135°.
(1)①
如圖,作AE⊥PB于點(diǎn)E,
∵△APE中,∠APE=45°,PA=,
∴AE=PE=×=1,
∵PB=4,∴BE=PB﹣PE=3,
在Rt△ABE中,∠AEB=90°,
∴AB==.
②解法一:
如圖,因?yàn)樗倪呅?/span>ABCD為正方形,可將
△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△P'AB,
可得△PAD≌△P'AB,PD=P'B,PA=P'A.
∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°
∴PP′=PA=2,
∴PD=P′B===;
解法二:
如圖,過(guò)點(diǎn)P作AB的平行線,與DA的延長(zhǎng)線交于F,與DA的
延長(zhǎng)線交PB于G.
在Rt△AEG中,
可得AG===,EG=,PG=PE﹣EG=.
在Rt△PFG中,
可得PF=PGcos∠FPG=PGcos∠ABE=,FG=.
在Rt△PDF中,可得,
PD===.
(2)如圖所示,
將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°
得到△P'AB,PD的最大值即為P'B的最大值,
∵△P'PB中,P'B<PP'+PB,PP′= PA=2,PB=4,
且P、D兩點(diǎn)落在直線AB的兩側(cè),
∴當(dāng)P'、P、B三點(diǎn)共線時(shí),P'B取得最大值(如圖)
此時(shí)P'B=PP'+PB=6,即P'B的最大值為6.
此時(shí)∠APB=180°﹣∠APP'=135度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;
(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過(guò)計(jì)算說(shuō)明這輛貨車能否安全通過(guò)這條隧道.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,折疊矩形一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=,且CE:CF=3:4,則矩形ABCD的周長(zhǎng)為()
A. 36cm B. 3 C. 72cm D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,點(diǎn)M是射線BC上一點(diǎn),點(diǎn)N是CD延長(zhǎng)線上一點(diǎn),且BM=DN.直線BD與MN相交于E.
(1)如圖1,當(dāng)點(diǎn)M在BC上時(shí),求證:BD-2DE=BM;
(2)如圖2,當(dāng)點(diǎn)M在BC延長(zhǎng)線上時(shí),BD、DE、BM之間滿足的關(guān)系式是什么?;
(3)在(2)的條件下,連接BN交AD于點(diǎn)F,連接MF交BD于點(diǎn)G.若DE=,且AF:FD=1:2時(shí),求線段DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋里裝著只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組作摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù),下表示活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
請(qǐng)估算口袋中白球約是( )只.
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大潤(rùn)發(fā)超市在銷售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷售利潤(rùn),超市應(yīng)將這種商品的售價(jià)定為多少?
(2)設(shè)每件商品的售價(jià)為x元,超市所獲利潤(rùn)為y元.
①求y與x之間的函數(shù)關(guān)系式;
②物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,超市為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m,求這塊草坪的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com