【題目】如圖,在平面直角坐標(biāo)系中,矩形 OABC 的邊 OA x 軸重合,B 的坐標(biāo)為(﹣1,2),將矩形 OABC 繞平面內(nèi)一點 P 順時針旋轉(zhuǎn) 90°,使 A、C 兩點恰好落在反比例函數(shù) y 的圖象上,則旋轉(zhuǎn)中心 P 點的坐標(biāo)是(

A. ,﹣ B. ,﹣ C. ,﹣ D. ,﹣

【答案】C

【解析】

設(shè) A'(a,),則 C'(a+2,﹣1),依據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征,即可得到 a=2,進(jìn)而得出 A'(2,2),C'(4,1),設(shè) Px,y),再根據(jù) APA'P,CPC'P,即可得到方程組,進(jìn)而得出旋轉(zhuǎn)中心 P 點的坐標(biāo).

如圖,∵B 的坐標(biāo)為(﹣1,2),

∴矩形的長為 2,寬為 1,

由旋轉(zhuǎn)可得,A'O'⊥x 軸,O'C'⊥y 軸,

設(shè) A'(a,),則 C'(a+2,﹣1),

∵點 C'在反比例函數(shù) y的圖象上,

∴(a+2)(﹣1)=4,解得 a=2(負(fù)值已舍去),

A'(2,2),C'(4,1),

由旋轉(zhuǎn)的性質(zhì)可得,APA'P,CPC'P, 設(shè) Px,y),

,

解得 ,

∴旋轉(zhuǎn)中心 P 點的坐標(biāo)是(,﹣),故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長20cm、寬12cm的矩形紙板,將紙板四個角各剪去一個邊長為cm的正方形,然后將四周突出部分折起,可制成一個無蓋紙盒.

1)這個無蓋紙盒的長為   cm,寬為   cm;(用含x的式子表示)

2)若要制成一個底面積是180m2的無蓋長方體紙盒,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB6,BC10,點ECD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處,點GAF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:EBG45°;②SABGSFGH;DEF∽△ABG;④AG+DFFG.其中正確的是_____.(把所有正確結(jié)論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y2x+4與兩坐標(biāo)軸分別交于A,B兩點.

1)若一次函數(shù)y=﹣x+m與直線AB的交點在第二象限,求m的取值范圍;

2)若My軸上一點,Nx軸上一點,直線AB上是否存在兩點P,Q,使得以MN,P,Q四點為頂點的四邊形是正方形.若存在,求出M,N兩點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC,BD相交于點O,且ABCD,添加下列條件后仍不能判斷四邊形ABCD是平行四邊形的是( 。

A.ABCDB.ADBCC.OAOCD.ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識,組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績,分為5組:A50~60;B60~70;C70~80;D80~90;E90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.

(1)抽取學(xué)生的總?cè)藬?shù)是   人,扇形C的圓心角是   °;

(2)補全頻數(shù)直方圖;

(3)該校共有2200名學(xué)生,若成績在70分以下(不含70分)的學(xué)生創(chuàng)新意識不強,有待進(jìn)一步培養(yǎng),則該校創(chuàng)新意識不強的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù) yax2+bx+c 的圖象交 x 軸于A、B 兩點,交 y 軸于 C 點,P y 軸上的一個動點,已知 A(﹣2,0)、C(0,﹣2,且拋物線的對稱軸是直線 x=1.

(1)求此二次函數(shù)的解析式;

(2)連接 PB,則 PC+PB 的最小值是 ;

(3)連接 PA、PB,P 點運動到何處時,使得APB=60°,請求出 P 點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】益民商店經(jīng)銷某種商品,進(jìn)價為每件80元,商店銷售該商品每件售價高干8元且不超過120元若售價定為每件120元時,每天可銷售200件,市場調(diào)查反映:該商品售價在120元的基礎(chǔ)上,每降價1元,每天可多銷售10件,設(shè)該商品的售價為元,每天銷售該商品的數(shù)量為件.

(1)之間的函數(shù)關(guān)系式;

(2)商店在銷售該商品時,除成本外每天還需支付其余各種費用1000元,益民商店在某一天銷售該商品時共獲利8000元,求這一天該商品的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

如圖1,在正方形ABCD的內(nèi)部,作DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。

類比研究

如圖2,在正ABC的內(nèi)部,作BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)ABD,BCE,CAF是否全等?如果是,請選擇其中一對進(jìn)行證明;

(2)DEF是否為正三角形?請說明理由;

(3)進(jìn)一步探究發(fā)現(xiàn),ABD的三邊存在一定的等量關(guān)系,設(shè),,請?zhí)剿?/span>,滿足的等量關(guān)系。

查看答案和解析>>

同步練習(xí)冊答案