【題目】閱讀以下材料,并按要求完成相應的任務.
已知平面上兩點,則所有符合且的點會組成一個圓.這個結論最先由古希臘數學家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.
阿氏圓基本解法:構造三角形相似.
(問題)如圖1,在平面直角坐標中,在軸,軸上分別有點,點是平面內一動點,且,設,求的最小值.
阿氏圓的關鍵解題步驟:
第一步:如圖1,在上取點,使得;
第二步:證明;第三步:連接,此時即為所求的最小值.
下面是該題的解答過程(部分):
解:在上取點,使得,
又.
任務:
將以上解答過程補充完整.
如圖2,在中,為內一動點,滿足,利用中的結論,請直接寫出的最小值.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的表達式是,它與兩坐標軸分別交于C、D兩點,且∠OCD=60,設點A的坐標為(m,0),若以A為圓心,2為半徑的⊙A與直線l相交于M、N兩點,當MN=時,m的值為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我區(qū)某校舉行冬季運動會,其中一個項目是乒乓球比賽,比賽為單循環(huán)制,即所有參賽選手彼此恰好比賽一場. 記分規(guī)則是:每場比賽勝者得3分、負者得0分、平局各得1分. 賽后統(tǒng)計,所有參賽者的得分總知為210分,且平局數不超過比賽總場數的,本次友誼賽共有參賽選手__________人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個項點P,N分別在AB,AC上.
(1)當矩形的邊PN=PQ時,求此時矩形零件PQMN的面積;
(2)求這個矩形零件PQMN面積S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若平面直角坐標系內的點 M 滿足橫、縱坐標都為整數,則把點 M 叫做“整點”.例如:P(1,0)、Q(2,-2)都是“整點”.拋物線 y=mx2-2mx+m-1(m>0)與 x 軸交于 A、 B 兩點,若該拋物線在 A、B 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個整點,則 m 的取值范圍是( )
A. m B. m C. m D. m
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖坐標系中,O(0,0),A(6,6),B(12,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則AC:AD的值是( 。
A.1:2B.2:3C.6:7D.7:8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經過A點的直線交拋物線于點D (2, 3).
(1)求拋物線的解析式和直線AD的解析式;
(2)過x軸上的點E (a,0) 作直線EF∥AD,交拋物線于點F,是否存在實數a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦AD∥OC,弦DF⊥AB于點G.
(1)求證:點E是弧BD的中點;
(2)求證:CD是⊙O的切線;
(3)若tan∠ADG=,⊙O的半徑為5,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com