【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2=(m為常數(shù),且n≠0)的圖象交于點A(﹣3,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結0A、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.
【答案】(1)反比例函數(shù)解析式為y2=﹣;一次函數(shù)解析式為y1=﹣x﹣2;(2)4;(3)x>1
【解析】
(1)利用待定系數(shù)法,把A點坐標代入反比例函數(shù)的解析式,即可得到反比例函數(shù)的解析式;把A、B兩點代入一次函數(shù)解析式中,即可求得一次函數(shù)的解析式;
(2)先求解C點的坐標,利用S△AOB=S△AOC+S△COB即可求解;
(3)觀察函數(shù)圖像,即可得到答案;
解:(1)∵A(﹣3,1),
∴將A坐標代入反比例函數(shù)解析式y2=中,得m=﹣3,
∴反比例函數(shù)解析式為y2=﹣;
將B(1,n)代入y=﹣,得n=﹣3,
∴B坐標(1,﹣3),
將A與B坐標代入一次函數(shù)解析式中,得,
解得a=﹣1,b=﹣2,
∴一次函數(shù)解析式為y1=﹣x﹣2;
(2)設直線AB與y軸交于點C,
令x=0,得y=﹣2,
∴點C坐標(0,﹣2),
∴S△AOB=S△AOC+S△COB=×2×3+×1=4;
(3)由圖象可得,當x>1時,反比例函數(shù)的圖象再一次函數(shù)的上方,且反比例函數(shù)和一次函數(shù)的圖象均在x軸的下方,
故當y1<y2<0時,自變量x的取值范圍x>1.
科目:初中數(shù)學 來源: 題型:
【題目】投石機是古代的大型攻城武器,是數(shù)學、工程、物理等復雜學科相互融合的應用(如圖(1)).在我國《元史·亦思馬因傳》中對這種投石機就有過記載(如圖(2)).
圖(3)是圖(1)中人工投石機的側面示意圖,炮架的橫向支架均與地面相互平行,已知米,炮軸距地面4.5米,,炮梢頂端點能到達水平地面,最高點能到達點處,且旋轉的夾角(點,,,在同一平面內),求點到水平地面的距離.(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關注,武漢市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 ;
(2)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,恰好抽到1個男生和1個女生的概率為 ;
(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,AD與BC相交于點E,AF平分∠BAD,交BC于點F,交CD的延長線于點G.
(1)若∠G=29°,求∠ADC的度數(shù);
(2)若點F是BC的中點,求證:AB=AD+CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm)2.已知y與t的函數(shù)關系圖象如圖2,則下列結論錯誤的是( )
A.AE=6cm
B.sin∠EBC=0.8
C.當 0<t≤10 時,y=0.4t2
D.當 t=12s 時,△PBQ 是等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個芭蕾舞團演員的身高(單位:cm)如下表:
甲 | 164 | 164 | 165 | 165 | 166 | 166 | 167 | 167 |
乙 | 163 | 163 | 165 | 165 | 166 | 166 | 168 | 168 |
兩組芭蕾舞團演員身高的方差較小的是______.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的點P和圖形M,給出如下定義:Q為圖形M上任意一點,如果兩點間的距離有最大值,那么稱這個最大值為點P與圖形M間的開距離,記作.已知直線與x軸交于點A,與y軸交于點B,的半徑為1.
(1)若,
①求的值;
②若點C在直線上,求的最小值;
(2)以點A為中心,將線段順時針旋轉得到,點E在線段組成的圖形上,若對于任意點E,總有,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將置于平面直角坐標系中的三角板AOB繞O點順時針旋轉90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,則B'點的坐標為 ( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某調查機構對某地互聯(lián)網(wǎng)行業(yè)從業(yè)情況進行調查統(tǒng)計,得到當?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖和當?shù)?/span>90后從事互聯(lián)網(wǎng)行業(yè)崗位分布統(tǒng)計圖:
互聯(lián)網(wǎng)行業(yè)從業(yè)人員年齡分布統(tǒng)計圖 90后從事互聯(lián)網(wǎng)行業(yè)崗位分布圖
對于以下四種說法,你認為正確的是_____ (寫出全部正確說法的序號).
①在當?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,90后人數(shù)占總人數(shù)的一半以上
②在當?shù)鼗ヂ?lián)網(wǎng)行業(yè)從業(yè)人員中,80前人數(shù)占總人數(shù)的13%
③在當?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事技術崗位的90后人數(shù)超過總人數(shù)的20%
④在當?shù)鼗ヂ?lián)網(wǎng)行業(yè)中,從事設計崗位的90后人數(shù)比80前人數(shù)少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com