【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點D,DE∥AC交AB于點E,若AB=8,則DE=_______
【答案】4
【解析】試題分析:根據(jù)角平分線的定義可得∠CAD=∠BAD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠CAD=∠ADE,然后求出∠ADE=∠BAD,根據(jù)等角對等邊可得AE=DE,然后根據(jù)等角的余角相等求出∠ABD=∠BDE,根據(jù)等角對等邊可得DE=BE,從而得到DE=AB.
解:∵AD是∠BAC的平分線,
∴∠CAD=∠BAD,
∵DE∥AC,
∴∠CAD=∠ADE,
∴∠ADE=∠BAD,
∴AE=DE,
∵BD⊥AD,
∴∠ADE+∠BDE=∠BAD+∠ABD=90°,
∴∠ABD=∠BDE,
∴DE=BE,
∴DE=AB,
∵AB=8,
∴DE=×8=4.
故答案為:4.
科目:初中數(shù)學 來源: 題型:
【題目】一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是( 。ńY果保留小數(shù)點后兩位)(參考數(shù)據(jù):≈1.732,≈1.414)
A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動點,以P為圓心,PA長為半徑的⊙P交射線AB、AC于D、E兩點,連接DE,則線段DE長度的最大值為( )
A. 3 B. 6 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,在AB的延長線上有點E,且EF=ED.
(1)求證:DE是⊙O的切線;
(2)若tanA=,探究線段AB和BE之間的數(shù)量關系,并證明;
(3)在(2)的條件下,若OF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元。物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元。經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100。在銷售過程中,每天還要支付其他費用450元。
(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍。
(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式。
(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形放置在平面直角坐標系中,,所在直線為軸,所在直線為軸,反比例函數(shù)的圖象經(jīng)過的中點,并且與交于點,已知.則的長等于( )
A. 2.5 B. 2 C. 1.5 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形點的坐標分別為、、、,四邊形關于軸作軸對稱變換得到四邊形,則點的對應坐標為________.
四邊形繞點順時針旋轉得到四邊形,則點的對應坐標為________.
在圖中畫出四邊形和四邊形,直接寫出它們重疊部分的周長為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com