【題目】有這樣一個問題:
探究函數的圖象與性質.
小東根據學習函數的經驗,對函數的圖象與性質進行了探究.
下面是小東的探究過程,請補充完成:
(1)填表
… | 0 | 1 | 2 | 3 | 4 | 5 | 6 | . . . | ||
… | 3 | 2 | . . . |
(2)根據(1)中的結果,請在所給坐標系中畫出函數的圖象;
科目:初中數學 來源: 題型:
【題目】如圖,點A、B分別在數軸原點O的兩側,且OB+8=OA,點A對應數是20.
(1)求B點所對應的數;
(2)動點P、Q、R分別從B、O、A同時出發(fā),其中P、Q均向右運動,速度分別為2個單位長度/秒,4個單位長度/秒,點R向左運動,速度為5個單位長度/秒,設它們的運動時間為t秒,當點R恰好為PQ的中點時,求t的值及R所表示的數;
(3)當時,BP+AQ的值是否保持不變?若不變,直接寫出定值;若變化,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了預防疾病,某單位對辦公室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y關于x的函數關系式為 ,自變量x的取值范為 ;藥物燃燒后,y關于x的函數關系式為 .
(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時員工方可進辦公室,那么從消毒開始,至少需要經過 分鐘后,員工才能回到辦公室;
(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七(1)班學生的平均身高是160厘米,下表給出了該班6名學生的身高情況(單位:厘米).
學 生 | A | B | C | D | E | F |
身 高 | 157 | 162 | 159 | 154 | 163 | 165 |
身高與平均身高的差值 | -3 | +2 | -1 | a | +3 | b |
(1)列式計算表中的數據a和b;
(2)這6名學生中誰最高?誰最矮?最高與最矮學生的身高相差多少?
(3)這6名學生的平均身高與全班學生的平均身高相比,在數值上有什么關系?(通過計算回答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝店為了鼓勵營業(yè)員多銷售服裝,在原來的支付月薪方式(y1):每月底薪600元,每售出一件服裝另支付4元的提成,推出第二種支付月薪的方式(y2),如圖所示,設x(件)是一個月內營業(yè)員銷售服裝的數量,y(元)是營業(yè)員收入的月薪,請結合圖形解答下列問題:
(1)求y1與y2的函數關系式;
(2)該服裝店新推出的第二種付薪方式是怎樣向營業(yè)員支付薪水的?
(3)如果你是營業(yè)員,你會如何選擇支付薪水的方式?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著互聯(lián)網的發(fā)展,互聯(lián)網消費逐漸深入人們生活,如圖是“滴滴順風車”與“滴滴快車”的行駛里程x(公里)與計費y(元)之間的函數關系圖象,下列說法:
(1)“快車”行駛里程不超過5公里計費8元;
(2)“順風車”行駛里程超過2公里的部分,每公里計費1.2元;
(3)A點的坐標為(6.5,10.4);
(4)從哈爾濱西站到會展中心的里程是15公里,則“順風車”要比“快車”少用3.4元,其中正確的個數有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景
如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,
,于是.
遷移應用
(1)如圖2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三點在同一直線上,連接BD.
(。┣笞C:△ADB≌△AEC;
(ⅱ)請直接寫出線段AD,BD,CD之間的等量關系式.
拓展延伸
(2)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
(ⅰ)證明:△CEF是等邊三角形;
(ⅱ)若AE=5,CE=2,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,直線與軸分別交于點、點,直線交于點,是直線上一動點,且在點的上方,設點.
(1)當四邊形的面積為38時,求點的坐標,此時在軸上有一點,在軸上找一點,使得最大,求出的最大值以及此時點坐標;
(2)在第(1)問條件下,直線左右平移,平移的距離為. 平移后直線上點,點的對應點分別為點、點,當為等腰三角形時,直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面直角坐標系 xOy 中,正比例函數 y=kx 與一次函數 y=x+b 的圖象相交于點 A(4,3).過點 P(2,0)作 x 軸的垂線,分別交正比例函數的圖象于點 B,交一次函數的圖象于點 C, 連接 OC.
(1)求這兩個函數解析式;
(2)求△OBC 的面積;
(3)在 x 軸上是否存在點 M,使△AOM 為等腰三角形? 若存在,直接寫出 M 點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com