【題目】閱讀下列材料:

a 2 ≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:

x2 4x 5 x2 4x 4 1 x 22 1 ,

x 22 ≥0,

x 22 1 ≥1,

x2 4x 5 ≥1.

試?yán)?/span>配方法解決下列問題:

(1)填空: x2 4x 5 ( x )2 ;

(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;

(3)比較代數(shù)式 x2 12x 3 的大。

【答案】(1)-2,1;(2)1;(3)>.

【解析】

1)根據(jù)配方法的方法配方即可;

2)先配方得到非負(fù)數(shù)和的形式,再根據(jù)非負(fù)數(shù)的性質(zhì)得到xy的值,再代入得到x+y的值;

3)利用比差法,將兩式相減,再配方即可作出判斷.

解:(1x2-4x+5=x-22+1;

故答案為:-21

2)∵x2-4x+y2+2y+5=0,

x2-4x+4+y2+2y+1=0,
x-22+y+12=0,
x-2=0y+1=0,
解得x=2,y=-1
x+y=2-1=1;

2,

,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AC、BD相交于OAE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2014年“元旦”前夕,某商場(chǎng)試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價(jià)格銷售,每天能賣出36件;若每件按39元的價(jià)格銷售,每天能賣出21件.假定每天銷售件數(shù)y(件)是銷售價(jià)格x (元)的一次函數(shù).
(1)直接寫出y與x之間的函數(shù)關(guān)系式y(tǒng)=
(2)在不積壓且不考慮其他因素的情況下,每件的銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤(rùn)P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB:y=0.5x+1分別與x軸、y軸交于點(diǎn)A,點(diǎn)B,直線CD:y=x+b分別與x軸,y軸交于點(diǎn)C,點(diǎn)D.直線ABCD相交于點(diǎn)P,已知SABD=4,則點(diǎn)P的坐標(biāo)是( )

A. (3,2.5) B. (8,5) C. (4,3) D. (0.5,1.25)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的角平分線BD,CE相交于點(diǎn)P.

(1)如果A=80,求BPC= .

(2)如圖,過點(diǎn)P作直線MNBC,分別交ABAC于點(diǎn)MN,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示) .

(3)將直線MN繞點(diǎn)P旋轉(zhuǎn)。

(i)當(dāng)直線MNABAC的交點(diǎn)仍分別在線段ABAC上時(shí),如圖,試探索MPB,NPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

(ii)當(dāng)直線MNAB的交點(diǎn)仍在線段AB,而與AC的交點(diǎn)在AC的延長(zhǎng)線上時(shí),如圖,試問(i)MPB,NPC,A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)說明你的理由;若不成立,請(qǐng)給出MPB,NPCA三者之間的數(shù)量關(guān)系,并說明你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:1-3+-2+4;(210÷×(-6);(399×(-8);(4-14+-23÷4×[5--32]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)CAB的中點(diǎn),點(diǎn)DBC的中點(diǎn),現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號(hào)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=9,點(diǎn)E在CD邊上,且DE=2CE,點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PD的最小值是( )

A.3
B.10
C.9
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案